References
- 1Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology. Human Perception and Performance, 38(3), 580–584. DOI: 10.1037/a0027885
- 2Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. DOI: 10.1016/j.tics.2012.06.010
- 3Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496. DOI: 10.3758/BF03205306
- 4Becker, M. W., Hemsteger, S., & Peltier, C. (2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23(9–10), 1150–1167. DOI: 10.1080/13506285.2016.1149532
- 5Berggren, N., & Eimer, M. (2021). The guidance of attention by templates for rejection during visual search. Attention, Perception, & Psychophysics, 83(1), 38–57. DOI: 10.3758/s13414-020-02191-z
- 6Britton, M. K., & Anderson, B. A. (2020). Specificity and persistence of statistical learning in distractor suppression. Journal of Experimental Psychology: Human Perception and Performance, 46(3), 324–334. DOI: 10.1037/xhp0000718
- 7Campbell, J. I. D., & Thompson, V. A. (2012). MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis. Behavior Research Methods, 44(4), 1255–1265. DOI: 10.3758/s13428-012-0186-0
- 8Carlisle, N. B., & Woodman, G. F. (2011). Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica, 137(2), 217–225. DOI: 10.1016/j.actpsy.2010.06.012
- 9Chang, S., & Egeth, H. E. (2019). Enhancement and suppression flexibly guide attention. Psychological Science, 30(12), 1724–1732. DOI: 10.1177/0956797619878813
- 10Chao, H.-F. (2010). Top-down attentional control for distractor locations: The benefit of precuing distractor locations on target localization and discrimination. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 303–316. DOI: 10.1037/a0015790
- 11Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how, and where. Current Opinion in Psychology, 29, 135–147. DOI: 10.1016/j.copsyc.2019.02.004
- 12Conci, M., Deichsel, C., Müller, H. J., & Töllner, T. (2019). Feature guidance by negative attentional templates depends on search difficulty. Visual Cognition, 27(3–4), 317–326. DOI: 10.1080/13506285.2019.1581316
- 13Cunningham, C. A., & Egeth, H. E. (2016). Taming the white bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science, 27(4), 476–485. DOI: 10.1177/0956797615626564
- 14De Tommaso, M., & Turatto, M. (2019). Learning to ignore salient distractors: Attentional set and habituation. Visual Cognition, 27(3–4), 214–226. DOI: 10.1080/13506285.2019.1583298
- 15Di Caro, V., Theeuwes, J., & Della Libera, C. (2019). Suppression history of distractor location biases attentional and oculomotor control. Visual Cognition, 27(2), 142–157. DOI: 10.1080/13506285.2019.1617376
- 16Duncan, D., & Theeuwes, J. (2020). Statistical learning in the absence of explicit top-down attention. Cortex, 131, 54–65. DOI: 10.1016/j.cortex.2020.07.006
- 17Failing, M., Feldmann-Wüstefeld, T., Wang, B., Olivers, C., & Theeuwes, J. (2019). Statistical regularities induce spatial as well as feature-specific suppression. Journal of Experimental Psychology: Human Perception and Performance, 45(10), 1291–1303. DOI: 10.1037/xhp0000660
- 18Failing, M., & Theeuwes, J. (2020). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27(1), 86–95. DOI: 10.3758/s13423-019-01672-z
- 19Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 81(5), 1405–1414. DOI: 10.3758/s13414-019-01704-9
- 20Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67–95. DOI: 10.1016/j.cortex.2017.09.027
- 21Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740–1750. DOI: 10.1177/0956797615597913
- 22Gaspelin, N., & Luck, S. J. (2018a). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 626–644. DOI: 10.1037/xhp0000484
- 23Gaspelin, N., & Luck, S. J. (2018b). The Role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92. DOI: 10.1016/j.tics.2017.11.001
- 24Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate. Current Opinion in Psychology, 29, 12–18. DOI: 10.1016/j.copsyc.2018.10.013
- 25Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147–153. DOI: 10.1177/0963721414525780
- 26Geng, J. J., Won, B.-Y., & Carlisle, N. B. (2019). Distractor ignoring: Strategies, learning, and passive filtering. Current Directions in Psychological Science, 28(6), 600–606. DOI: 10.1177/0963721419867099
- 27Giménez-Fernández, T., Luque, D., Shanks, D. R., & Vadillo, M. A. (2020). Probabilistic cuing of visual search: Neither implicit nor inflexible. Journal of Experimental Psychology: Human Perception and Performance, 46(10), 1222–1234. DOI: 10.1037/xhp0000852
- 28Gong, D., & Theeuwes, J. (2021). A saliency-specific and dimension-independent mechanism of distractor suppression. Attention, Perception, & Psychophysics, 83(1), 292–307. DOI: 10.3758/s13414-020-02142-8
- 29Goschy, H., Bakos, S., Müller, H. J., & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1195. DOI: 10.3389/fpsyg.2014.01195
- 30Graves, T., & Egeth, H. E. (2015). When does feature search fail to protect against attentional capture? Visual Cognition, 23(9–10), 1098–1123. DOI: 10.1080/13506285.2016.1145159
- 31Heuer, A., & Schubö, A. (2020). Cueing distraction: Electrophysiological evidence for anticipatory active suppression of distractor location. Psychological Research, 84(8), 2111–2121. DOI: 10.1007/s00426-019-01211-4
- 32Huang, C., Vilotijevi, A., Theeuwes, J., & Donk, M. (2021). Proactive distractor suppression elicited by statistical regularities in visual search. Psychonomic Bulletin & Review, 28(3), 918–927. DOI: 10.3758/s13423-021-01891-3
- 33Jiang, Y. V. (2018). Habitual versus goal-driven attention. Cortex, 102, 107–120. DOI: 10.1016/j.cortex.2017.06.018
- 34Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 87–99. DOI: 10.1037/a0027611
- 35Kong, S., Li, X., Wang, B., & Theeuwes, J. (2020). Proactively location-based suppression elicited by statistical learning. PLOS ONE, 15(6),
e0233544 . DOI: 10.1371/journal.pone.0233544 - 36Li, Q., Joo, S. J., Yeatman, J. D., & Reinecke, K. (2020). Controlling for participants’ viewing distance in large-scale, psychophysical online experiments using a virtual chinrest. Scientific Reports, 10(1), 904. DOI: 10.1038/s41598-019-57204-1
- 37Lien, M. C., Ruthruff, E., & Hauck, C. (2022). On preventing attention capture: Is singleton suppression actually singleton suppression? Psychological Research, 86, 1958–1971. DOI: 10.1007/s00426-021-01599-y
- 38Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672. DOI: 10.3758/BF03209251
- 39Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58(7), 977–991. DOI: 10.3758/BF03206826
- 40Meeter, M., & Olivers, C. N. L. (2006). Intertrial priming stemming from ambiguity: A new account of priming in visual search. Visual Cognition, 13(2), 202–222. DOI: 10.1080/13506280500277488
- 41Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74(8), 1590–1605. DOI: 10.3758/s13414-012-0358-0
- 42Morey, R. D. (2008). Tutorials in Quantitative Methods for Psychology, 4, 61–64. DOI: 10.20982/tqmp.04.2.p061
- 43Munneke, J., Heslenfeld, D. J., Usrey, W. M., Theeuwes, J., & Mangun, G. R. (2011). Preparatory effects of distractor suppression: Evidence from visual cortex. PLOS ONE, 6(12),
e27700 . DOI: 10.1371/journal.pone.0027700 - 44Munneke, J., Van der Stigchel, S., & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129(1), 101–107. DOI: 10.1016/j.actpsy.2008.05.004
- 45Noonan, M. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. The Journal of Neuroscience, 36(6), 1797–1807. DOI: 10.1523/JNEUROSCI.2133-15.2016
- 46Noonan, M. P., Crittenden, B. M., Jensen, O., & Stokes, M. G. (2018). Selective inhibition of distracting input. Behavioural Brain Research, 355, 36–47. DOI: 10.1016/j.bbr.2017.10.010
- 47Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. DOI: 10.3758/s13428-018-01193-y
- 48Ruff, C. C., & Driver, J. (2006). Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence. Journal of Cognitive Neuroscience, 18(4), 522–538. DOI: 10.1162/jocn.2006.18.4.522
- 49Sauter, M., Hanning, N. M., Liesefeld, H. R., & Müller, H. J. (2021). Post-capture processes contribute to statistical learning of distractor locations in visual search. Cortex, 135, 108–126. DOI: 10.1016/j.cortex.2020.11.016
- 50Sauter, M., Liesefeld, H. R., & Müller, H. J. (2019). Learning to suppress salient distractors in the target dimension: Region-based inhibition is persistent and transfers to distractors in a nontarget dimension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(11), 2080–2097. DOI: 10.1037/xlm0000691
- 51Sauter, M., Liesefeld, H. R., Zehetleitner, M., & Müller, H. J. (2018). Region-based shielding of visual search from salient distractors: Target detection is impaired with same- but not different-dimension distractors. Attention, Perception, & Psychophysics, 80(3), 622–642. DOI: 10.3758/s13414-017-1477-4
- 52Shanks, D. R. (2017). Regressive research: The pitfalls of post hoc data selection in the study of unconscious mental processes. Psychonomic Bulletin & Review, 24(3), 752–775. DOI: 10.3758/s13423-016-1170-y
- 53Stilwell, B. T., Bahle, B., & Vecera, S. P. (2019). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 419–433. DOI: 10.1037/xhp0000613
- 54Stilwell, B. T., & Vecera, S. P. (2019a). Learned and cued distractor rejection for multiple features in visual search. Atten Percept Psychophysics, 81, 359–376. DOI: 10.3758/s13414-018-1622-8
- 55Stilwell, B. T., & Vecera, S. P. (2019b). Cued distractor rejection disrupts learned distractor rejection. Visual Cognition, 27(3–4), 327–342. DOI: 10.1080/13506285.2018.1564808
- 56Theeuwes, J. (2018). Visual selection: Usually fast and automatic; seldom slow and volitional. Journal of Cognition, 1(1), 1–15. DOI: 10.5334/joc.13
- 57Tsal, Y., & Makovski, T. (2006). The attentional white bear phenomenon: The mandatory allocation of attention to expected distractor locations. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 351–363. DOI: 10.1037/0096-1523.32.2.351
- 58Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102. DOI: 10.3758/s13423-015-0892-6
- 59Vadillo, M. A., Linssen, D., Orgaz, C., Parsons, S., & Shanks, D. R. (2020). Unconscious or underpowered? Probabilistic cuing of visual attention. Journal of Experimental Psychology: General, 149(1), 160–181. DOI: 10.1037/xge0000632
- 60Valsecchi, M., & Turatto, M. (2021). Distractor filtering is affected by local and global distractor probability, emerges very rapidly but is resistant to extinction. Attention, Perception, & Psychophysics, 83(6), 2458–2472. DOI: 10.3758/s13414-021-02303-3
- 61van Moorselaar, D., Daneshtalab, N., & Slagter, H. A. (2021). Neural mechanisms underlying distractor inhibition on the basis of feature and/or spatial expectations. Cortex, 137, 232–250. DOI: 10.1016/j.cortex.2021.01.010
- 62van Moorselaar, D., Lampers, E., Cordesius, E., & Slagter, H. A. (2020). Neural mechanisms underlying expectation-dependent inhibition of distracting information. ELife, 9,
e61048 . DOI: 10.7554/eLife.61048 - 63Vatterott, D. B., Mozer, M. C., & Vecera, S. P. (2018). Rejecting salient distractors: Generalization from experience. Attention, Perception, & Psychophysics, 80(2), 485–499. DOI: 10.3758/s13414-017-1465-8
- 64Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871–878. DOI: 10.3758/s13423-012-0280-4
- 65Vecera, S. P., Cosman, J. D., Vatterott, D. B., & Roper, Z. J. (2014).
The control of visual attention: Toward a unified account . In Ross, B. H. (Ed.), Psychology of learning and motivation (Vol. 60, pp. 303–347). Elsevier. DOI: 10.1016/B978-0-12-800090-8.00008-1 - 66Wang, B., & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13–17. DOI: 10.1037/xhp0000472
- 67Wang, B., & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860–870. DOI: 10.3758/s13414-018-1493-z
- 68Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7), 1763–1774. DOI: 10.3758/s13414-018-1562-3
- 69Wang, B., van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 31(10), 1535–1548. DOI: 10.1162/jocn_a_01433
- 70Wegner, D. M., Schneider, D. J., Carter, S. R., & White, T. L. (1987). Paradoxical effects of thought suppression. Journal of Personality and Social Psychology, 53(1), 5–13. DOI: 10.1037/0022-3514.53.1.5
- 71Zhang, Z., Gapelin, N., & Carlisle, N. B. (2020). Probing early attention following negative and positive templates. Attention, Perception, & Psychophysics, 82(3), 1166–1175. DOI: 10.3758/s13414-019-01864-8
