References
- 1Allen, J. B., Kenrick, D. T., Linder, D. E., & McCall, M. A.. (1989). Arousal and attraction: A response-facilitation alternative to misattribution and negative-reinforcement models. Journal of Personality and Social Psychology, 57(2), 261–270. DOI: 10.1037/0022-3514.57.2.261
- 2Alós-Ferrer, C., Jaudas, A., & Ritschel, A.. (2021). Effortful Bayesian updating: A pupil-dilation study. Journal of Risk and Uncertainty, 63(1), 81–102. DOI: 10.1007/s11166-021-09358-5
- 3Armel, K. C., Beaumel, A., & Rangel, A.. (2008). Biasing simple choices by manipulating relative visual attention. Judgment and Decision making, 3(5), 396–403.
- 4Asteriadis, S., Karpouzis, K., & Kollias, S.. (2013). Visual Focus of Attention in Non-calibrated Environments using Gaze Estimation. International Journal of Computer Vision, 107(3), 293–316. DOI: 10.1007/s11263-013-0691-3
- 5Atalay, A. S., Bodur, H. O., & Rasolofoarison, D.. (2012). Shining in the Center: Central Gaze Cascade Effect on Product Choice. Journal of Consumer Research, 39(4), 848–866. DOI: 10.1086/665984
- 6Bialkova, S., & van Trijp, H. C. M.. (2011). An efficient methodology for assessing attention to and effect of nutrition information displayed front-of-pack. Food Quality and Preference, 22(6), 592–601. DOI: 10.1016/j.foodqual.2011.03.010
- 7Binda, P., & Murray, S. O.. (2015). Keeping a large-pupilled eye on high-level visual processing. Trends Cogn Sci, 19(1), 1–3. DOI: 10.1016/j.tics.2014.11.002
- 8Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J.. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–607. DOI: 10.1111/j.1469-8986.2008.00654.x
- 9Bremmer, F., Kubischik, M., Hoffmann, K. P., & Krekelberg, B.. (2009). Neural dynamics of saccadic suppression. J Neurosci, 29(40), 12374–12383. DOI: 10.1523/JNEUROSCI.2908-09.2009
- 10Breton-Provencher, V., & Sur, M.. (2019). Active control of arousal by a locus coeruleus GABAergic circuit. Nature neuroscience, 22(2), 218–228. DOI: 10.1038/s41593-018-0305-z
- 11Cavanagh, J. F., Wiecki, T. V., Kochar, A., & Frank, M. J.. (2014). Eye tracking and pupillometry are indicators of dissociable latent decision processes. J Exp Psychol Gen, 143(4), 1476–1488. DOI: 10.1037/a0035813
- 12Chandon, P., Hutchinson, J. W., Bradlow, E. T., & Young, S. H.. (2009). Does in-store marketing work? Effects of the number and position of shelf facings on brand attention and evaluation at the point of purchase. Journal of marketing, 73(6), 1–17. DOI: 10.1509/jmkg.73.6.1
- 13Chen, M., Burke, R. R., Hui, S. K., & Leykin, A.. (2021). Understanding Lateral and Vertical Biases in Consumer Attention: An In-Store Ambulatory Eye-Tracking Study. Journal of Marketing Research, 58(6), 1120–1141. DOI: 10.1177/0022243721998375
- 14Clayton, E. C., Rajkowski, J., Cohen, J. D., & Aston-Jones, G.. (2004). Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. J Neurosci, 24(44), 9914–9920. DOI: 10.1523/JNEUROSCI.2446-04.2004
- 15Cristina, S., & Camilleri, K. P.. (2018). Unobtrusive and pervasive video-based eye-gaze tracking. Image and Vision Computing, 74, 21–40. DOI: 10.1016/j.imavis.2018.04.002
- 16de Gee, J. W., Colizoli, O., Kloosterman, N. A., Knapen, T., Nieuwenhuis, S., & Donner, T. H.. (2017). Dynamic modulation of decision biases by brainstem arousal systems. Elife, 6. DOI: 10.7554/eLife.23232
- 17de Gee, J. W., Knapen, T., & Donner, T. H.. (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proc Natl Acad Sci U S A, 111(5), E618–625. DOI: 10.1073/pnas.1317557111
- 18Deng, X., Kahn, B. E., Unnava, H. R., & Lee, H.. (2016). A “wide” variety effects of horizontal versus vertical display on assortiment processing, percieved variety, and choice. Journal of Marketing Research, 53(5), 682–698. DOI: 10.1509/jmr.13.0151
- 19Einhauser, W., Koch, C., & Carter, O. L.. (2010). Pupil dilation betrays the timing of decisions. Front Hum Neurosci, 4, 18. DOI: 10.3389/fnhum.2010.00018
- 20Gere, A., Danner, L., de Antoni, N., Kovács, S., Dürrschmid, K., & Sipos, L.. (2016). Visual attention accompanying food decision process: An alternative approach to choose the best models. Food Quality and Preference, 51, 1–7. DOI: 10.1016/j.foodqual.2016.01.009
- 21Gere, A., Danner, L., Dürrschmid, K., Kókai, Z., Sipos, L., Huzsvai, L., & Kovács, S.. (2020). Structure of presented stimuli influences gazing behavior and choice. Food Quality and Preference, 83. DOI: 10.1016/j.foodqual.2020.103915
- 22Gidlof, K., Anikin, A., Lingonblad, M., & Wallin, A.. (2017). Looking is buying. How visual attention and choice are affected by consumer preferences and properties of the supermarket shelf. Appetite, 116, 29–38. DOI: 10.1016/j.appet.2017.04.020
- 23Godijn, R., & Theeuwes, J.. (2003). Parallel allocation of attention prior to the execution of saccade sequences. J Exp Psychol Hum Percept Perform, 29(5), 882–896. DOI: 10.1037/0096-1523.29.5.882
- 24Graham, D. J., & Jeffery, R. W.. (2012). Predictors of nutrition label viewing during food purchase decision making: an eye tracking investigation. Public Health Nutr, 15(2), 189–197. DOI: 10.1017/S1368980011001303
- 25Hayhoe, M.. (2000). Vision Using Routines: A Functional Account of Vision. Visual Cognition, 7(1–3), 43–64. DOI: 10.1080/135062800394676
- 26Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B.. (2003). Visual memory and motor planning in a natural task. Journal of vision, 3(1), 6–6. DOI: 10.1167/3.1.6
- 27Holmqvist, K., Orbom, S. L., Hooge, I. T. C., Niehorster, D. C., Alexander, R. G., Andersson, R., … Hessels, R. S.. (2022). Eye tracking: empirical foundations for a minimal reporting guideline. Behav Res Methods. DOI: 10.3758/s13428-021-01762-8
- 28Huang, C. M., Andrist, S., Sauppe, A., & Mutlu, B.. (2015). Using gaze patterns to predict task intent in collaboration. Front Psychol, 6, 1049. DOI: 10.3389/fpsyg.2015.01049
- 29Husić-Mehmedović, M., Omeragić, I., Batagelj, Z., & Kolar, T.. (2017). Seeing is not necessarily liking: Advancing research on package design with eye-tracking. Journal of Business Research, 80, 145–154. DOI: 10.1016/j.jbusres.2017.04.019
- 30Itti, L., & Koch, C.. (2001). Computational modelling of visual attention. Nature reviews neuroscience, 2(3), 194–203. DOI: 10.1038/35058500
- 31Jadue, J., Slanzi, G., Salas, L., & Velasquez, J. D.. (2015). Web User Click Intention Prediction by Using Pupil Dilation Analysis. Paper presented at the 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). DOI: 10.1109/WI-IAT.2015.221
- 32Jantathai, S., Danner, L., Joechl, M., & Dürrschmid, K.. (2013). Gazing behavior, choice and color of food: Does gazing behavior predict choice? Food Research International, 54(2), 1621–1626. DOI: 10.1016/j.foodres.2013.09.050
- 33Johnson, A., Mulder, B., Sijbinga, A., & Hulsebos, L.. (2012). Action as a window to perception: measuring attention with mouse movements. Applied Cognitive Psychology, 26(5), 802–809. DOI: 10.1002/acp.2862
- 34Joshi, S., & Gold, J. I.. (2020). Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn Sci, 24(6), 466–480. DOI: 10.1016/j.tics.2020.03.005
- 35Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I.. (2016). Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron, 89(1), 221–234. DOI: 10.1016/j.neuron.2015.11.028
- 36Kahneman, D., & Beatty, J.. (1966). Pupil diameter and load on memory. Science, 154(3746), 1583–1585. DOI: 10.1126/science.154.3756.1583
- 37Katerina, T., Nicolaos, P., & Charalampos, Y.. (2014). Mouse tracking for web marketing: enhancing user experience in web application software by measuring self-efficacy and hesitation levels. Int. J. Strateg. Innovative Mark, 1, 233–247.
- 38Krajbich, I., Armel, C., & Rangel, A.. (2010). Visual fixations and the computation and comparison of value in simple choice. Nat Neurosci, 13(10), 1292–1298. DOI: 10.1038/nn.2635
- 39Krajbich, I., & Rangel, A.. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proc Natl Acad Sci U S A, 108(33), 13852–13857. DOI: 10.1073/pnas.1101328108
- 40Lambrecht, A., & Tucker, C.. (2013). When Does Retargeting Work? Information Specificity in Online Advertising. Journal of Marketing Research, 50(5), 561–576. DOI: 10.1509/jmr.11.0503
- 41Land, M., Mennie, N., & Rusted, J.. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28(11), 1311–1328. DOI: 10.1068/p2935
- 42Lee, C. R., & Margolis, D. J.. (2016). Pupil Dynamics Reflect Behavioral Choice and Learning in a Go/NoGo Tactile Decision-Making Task in Mice. Front Behav Neurosci, 10, 200. DOI: 10.3389/fnbeh.2016.00200
- 43Liu, Y., Rodenkirch, C., Moskowitz, N., Schriver, B., & Wang, Q.. (2017). Dynamic Lateralization of Pupil Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not Parasympathetic, Contributions. Cell Rep, 20(13), 3099–3112. DOI: 10.1016/j.celrep.2017.08.094
- 44Lohse, G. L.. (1997). Consumer eye movement patterns on yellow pages advertising. Journal of Advertising, 26(1), 61–73. DOI: 10.1080/00913367.1997.10673518
- 45Mathot, S.. (2018). Pupillometry: Psychology, Physiology, and Function. J Cogn, 1(1), 16. DOI: 10.5334/joc.18
- 46Mathot, S., & Theeuwes, J.. (2010). Evidence for the predictive remapping of visual attention. Exp Brain Res, 200(1), 117–122. DOI: 10.1007/s00221-009-2055-3
- 47Meißner, M., Musalem, A., & Huber, J.. (2016). Eye Tracking Reveals Processes that Enable Conjoint Choices to Become Increasingly Efficient with Practice. Journal of Marketing Research, 53(1), 1–17. DOI: 10.1509/jmr.13.0467
- 48Milosavljevic, M., Navalpakkam, V., Koch, C., & Rangel, A.. (2012). Relative visual saliency differences induce sizable bias in consumer choice. Journal of Consumer Psychology, 22(1), 67–74. DOI: 10.1016/j.jcps.2011.10.002
- 49Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H.. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp, 35(8), 4140–4154. DOI: 10.1002/hbm.22466
- 50Murphy, P. R., Vandekerckhove, J., & Nieuwenhuis, S.. (2014). Pupil-linked arousal determines variability in perceptual decision making. PLoS Comput Biol, 10(9),
e1003854 . DOI: 10.1371/journal.pcbi.1003854 - 51Naber, M., Stoll, J., Einhauser, W., & Carter, O.. (2013). How to become a mentalist: reading decisions from a competitor’s pupil can be achieved without training but requires instruction. PLoS One, 8(8),
e73302 . DOI: 10.1371/journal.pone.0073302 - 52Navalpakkam, V., Kumar, R., Li, L., & Sivakumar, D.. (2012). Attention and selection in online choice tasks. Paper presented at the International conference on user modeling, adaptation, and personalization. DOI: 10.1007/978-3-642-31454-4_17
- 53Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D.. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull, 131(4), 510–532. DOI: 10.1037/0033-2909.131.4.510
- 54Nothdurft, H.-C.. (2000). Salience from feature contrast: additivity across dimensions. Vision research, 40(10–12), 1183–1201. DOI: 10.1016/S0042-6989(00)00031-6
- 55Nyamsuren, E., & Taatgen, N. A.. (2013). Set as an instance of a real-world visual-cognitive task. Cogn Sci, 37(1), 146–175. DOI: 10.1111/cogs.12001
- 56Orquin, J. L., & Mueller Loose, S.. (2013). Attention and choice: A review on eye movements in decision making. Acta Psychologica, 144(1), 190–206. DOI: 10.1016/j.actpsy.2013.06.003
- 57Piqueras-Fiszman, B., Velasco, C., Salgado-Montejo, A., & Spence, C.. (2013). Using combined eye tracking and word association in order to assess novel packaging solutions: A case study involving jam jars. Food Quality and Preference, 28(1), 328–338. DOI: 10.1016/j.foodqual.2012.10.006
- 58Preuschoff, K., t Hart, B. M., & Einhauser, W.. (2011). Pupil Dilation Signals Surprise: Evidence for Noradrenaline’s Role in Decision Making. Front Neurosci, 5, 115. DOI: 10.3389/fnins.2011.00115
- 59Privitera, C. M., Renninger, L. W., Carney, T., Klein, S., & Aguilar, M.. (2010). Pupil dilation during visual target detection. J Vis, 10(10), 3. DOI: 10.1167/10.10.3
- 60Ramsøy, T. Z., Jacobsen, C., Friis-Olivarius, M., Bagdziunaite, D., & Skov, M.. (2017). Predictive value of body posture and pupil dilation in assessing consumer preference and choice. Journal of Neuroscience, Psychology, and Economics, 10(2–3), 95–110. DOI: 10.1037/npe0000073
- 61Rayner, K., Miller, B., & Rotello, C. M.. (2008). Eye Movements When Looking at Print Advertisements: The Goal of the Viewer Matters. Appl Cogn Psychol, 22(5), 697–707. DOI: 10.1002/acp.1389
- 62Rebollar, R., Lidón, I., Martín, J., & Puebla, M.. (2015). The identification of viewing patterns of chocolate snack packages using eye-tracking techniques. Food Quality and Preference, 39, 251–258. DOI: 10.1016/j.foodqual.2014.08.002
- 63Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S.. (2014). Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2), 355–362. DOI: 10.1016/j.neuron.2014.09.033
- 64Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., & Tolias, A. S.. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat Commun, 7, 13289. DOI: 10.1038/ncomms13289
- 65Reuten, A., van Dam, M., & Naber, M.. (2018). Pupillary Responses to Robotic and Human Emotions: The Uncanny Valley and Media Equation Confirmed. Front Psychol, 9, 774. DOI: 10.3389/fpsyg.2018.00774
- 66Richer, F., & Beatty, J.. (1985). Pupillary dilations in movement preparation and execution. Psychophysiology, 22(2), 204–207. DOI: 10.1111/j.1469-8986.1985.tb01587.x
- 67Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P.. (2011). Predictive remapping of attention across eye movements. Nat Neurosci, 14(2), 252–256. DOI: 10.1038/nn.2711
- 68Russo, J. E., & Leclerc, F.. (1994). An eye-fixation analysis of choice processes for consumer nondurables. Journal of Consumer Research, 21(2), 274–290. DOI: 10.1086/209397
- 69Schotter, E. R., Berry, R. W., McKenzie, C. R. M., & Rayner, K.. (2010). Gaze bias: Selective encoding and liking effects. Visual Cognition, 18(8), 1113–1132. DOI: 10.1080/13506281003668900
- 70Shi, S. W., Wedel, M., & Pieters, F. G. M.. (2013). Information Acquisition During Online Decision Making: A Model-Based Exploration Using Eye-Tracking Data. Management Science, 59(5), 1009–1026. DOI: 10.1287/mnsc.1120.1625
- 71Shimojo, S., Simion, C., Shimojo, E., & Scheier, C.. (2003). Gaze bias both reflects and influences preference. Nat Neurosci, 6(12), 1317–1322. DOI: 10.1038/nn1150
- 72Slanzi, G., Balazs, J. A., & Velásquez, J. D.. (2017). Combining eye tracking, pupil dilation and EEG analysis for predicting web users click intention. Information Fusion, 35, 51–57. DOI: 10.1016/j.inffus.2016.09.003
- 73Strauch, C., Greiter, L., & Huckauf, A.. (2018). Pupil dilation but not microsaccade rate robustly reveals decision formation. Sci Rep, 8(1), 13165. DOI: 10.1038/s41598-018-31551-x
- 74Strauch, C., Hirzle, T., Van der Stigchel, S., & Bulling, A.. (2021). Decoding binary decisions under differential target probabilities from pupil dilation: A random forest approach. J Vis, 21(7), 6. DOI: 10.1167/jov.21.7.6
- 75Strauch, C., Koniakowsky, I., & Huckauf, A.. (2020). Decision Making and Oddball Effects on Pupil Size: Evidence for a Sequential Process. J Cogn, 3(1), 7. DOI: 10.5334/joc.96
- 76Strauch, C., Wang, C.-A., Einhäuser, W., Van der Stigchel, S., & Naber, M.. (2022). Pupillometry as an integrated readout of distinct attentional networks. Trends in Neurosciences. DOI: 10.1016/j.tins.2022.05.003
- 77Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K.-P.. (2002). Neural mechanisms of saccadic suppression. Science, 295(5564), 2460–2462. DOI: 10.1126/science.1068788
- 78van der Laan, L. N., Hooge, I. T. C., de Ridder, D. T. D., Viergever, M. A., & Smeets, P. A. M.. (2015). Do you like what you see? The role of first fixation and total fixation duration in consumer choice. Food Quality and Preference, 39, 46–55. DOI: 10.1016/j.foodqual.2014.06.015
- 79van Steenbergen, H., & Band, G. P.. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Front Hum Neurosci, 7, 215. DOI: 10.3389/fnhum.2013.00215
- 80Vinck, M., Batista-Brito, R., Knoblich, U., & Cardin, J. A.. (2015). Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron, 86(3), 740–754. DOI: 10.1016/j.neuron.2015.03.028
- 81Vu, T. M. H., Tu, V. P., & Duerrschmid, K.. (2016). Design factors influence consumers’ gazing behaviour and decision time in an eye-tracking test: A study on food images. Food Quality and Preference, 47, 130–138. DOI: 10.1016/j.foodqual.2015.05.008
- 82Wang, C. A., Baird, T., Huang, J., Coutinho, J. D., Brien, D. C., & Munoz, D. P.. (2018). Arousal Effects on Pupil Size, Heart Rate, and Skin Conductance in an Emotional Face Task. Front Neurol, 9, 1029. DOI: 10.3389/fneur.2018.01029
- 83Wästlund, E., Otterbring, T., Gustafsson, A., & Shams, P.. (2015). Heuristics and resource depletion: eye-tracking customers’ in situ gaze behavior in the field. Journal of Business Research, 68(1), 95–101. DOI: 10.1016/j.jbusres.2014.05.001
- 84Wastlund, E., Shams, P., & Otterbring, T.. (2018). Unsold is unseen … or is it? Examining the role of peripheral vision in the consumer choice process using eye-tracking methodology. Appetite, 120, 49–56. DOI: 10.1016/j.appet.2017.08.024
- 85Weichselgartner, E., & Sperling, G.. (1987). Dynamics of automatic and controlled visual attention. Science, 238(4828), 778–780. DOI: 10.1126/science.3672124
- 86Wolfe, J. M.. (1994). Visual search in continuous, naturalistic stimuli. Vision research, 34(9), 1187–1195. DOI: 10.1016/0042-6989(94)90300-X
- 87Zhang, B., & Seo, H.-S.. (2015). Visual attention toward food-item images can vary as a function of background saliency and culture: An eye-tracking study. Food Quality and Preference, 41, 172–179. DOI: 10.1016/j.foodqual.2014.12.004
- 88Zhang, J., Wedel, M., & Pieters, R.. (2009). Sales Effects of Attention to Feature Advertisements: A Bayesian Mediation Analysis. Journal of Marketing Research, 46(5), 669–681. DOI: 10.1509/jmkr.46.5.669
