Have a personal or library account? Click to login
Running online behavioral experiments using R: Implementation of a response-time decision making task as an R-Shiny app Cover

Running online behavioral experiments using R: Implementation of a response-time decision making task as an R-Shiny app

Open Access
|Jan 2022

Abstract

Online experiments allow for fast, massive, cost-efficient data collection. However, uncontrolled conditions in online experiments can be problematic, particularly when inferences hinge on response-times (RTs) in the millisecond range. To address this challenge, we developed a mobile-friendly open-source application using R-Shiny, a popular R package. In particular, we aimed to replicate the numerical distance effect, a well-established cognitive phenomenon. In the task, 169 participants (109 with a mobile device, 60 on a desktop computer) completed 116 trials displaying two-digit target numbers and decided whether they were larger or smaller than a fixed standard number. Sessions lasted ~7-minutes. Using generalized linear mixed models estimated with Bayesian inference methods, we observed a numerical distance effect: RTs decreased with the logarithm of the absolute difference between the target and the standard. Our results support the use of R-Shiny for RT-data collection. Furthermore, our method allowed us to measure systematic shifts in recorded RTs related to different OSs, web browsers, and devices, with mobile devices inducing longer shifts than desktop devices. Our work shows that precise RT measures can be reliably obtained online across mobile and desktop devices. It further paves the ground for the design of simple experimental tasks using R, a widely popular programming framework among cognitive scientists.

DOI: https://doi.org/10.5334/joc.200 | Journal eISSN: 2514-4820
Language: English
Submitted on: Mar 16, 2021
Accepted on: Nov 9, 2021
Published on: Jan 7, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Agustín Perez Santangelo, Guillermo Solovey, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.