References
- 1Besner, D., & Coltheart, M. (1979). Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 17, 467–472. DOI: 10.1016/0028-3932(79)90053-8
- 2Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience and Biobehavioral Reviews, 36, 2257–2273. DOI: 10.1016/j.neubiorev.2012.08.007
- 3Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B, 364, 1831–1840. DOI: 10.1098/rstb.2009.0028
- 4Cohen Kadosh, R., Cohen Kadosh, K., Linden, D. J., Gevers, W., Berger, A., & Henik, A. (2007). The brain locus of interaction between number and size: A combined functional magnetic resonance imaging and event-related potential study. Journal of Cognitive Neuroscience, 19, 957–970. DOI: 10.1162/jocn.2007.19.6.957
- 5Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396. DOI: 10.1037/0096-3445.122.3.371
- 6Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641. DOI: 10.1037/0096-1523.16.3.626
- 7Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44, 386–392. DOI: 10.1016/j.cortex.2007.08.004
- 8Fischer, M. H. (2013).
The spatial mapping of numbers: Its origin and flexibility . In: Coello, Y., & Bartolo, A. (Eds.), Language and action in cognitive neuroscience, 225–242. New York, NY, US: Psychology Press. - 9Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32, 32–44. DOI: 10.1037/0096-1523.32.1.32
- 10Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10, 389–395. DOI: 10.3758/BF03202431
- 11Hepping, A. M., Ploegmakers, J. J., Geertzen, J. H., Bulstra, S. K., & Stevens, M. (2015). The Influence of hand preference on grip strength in children and adolescents; A cross-sectional study of 2284 children and adolescents. PLoS One, 10. DOI: 10.1371/journal.pone.0143476
- 12Incel, N. A., Ceceli, E., Durukan, P. B., Erdem, H. R., & Yorgancioglu, Z. R. (2002). Grip strength: Effect of hand dominance. Singapore Medical Journal, 43, 234–237.
- 13Jeannerod, M. (1997). The cognitive neuroscience of action. Malden: Blackwell Publishing.
- 14Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44, 376–385. DOI: 10.1016/j.cortex.2007.08.003
- 15Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility—A model and taxonomy. Psychological Review, 97, 253–270. DOI: 10.1037/0033-295X.97.2.253
- 16Opfer, J. E., Thompson, C. A., & Furlong, E. E. (2010). Early development of spatial-numeric associations: Evidence from spatial and quantitative performance of preschoolers. Developmental Science, 13, 761–771. DOI: 10.1111/j.1467-7687.2009.00934.x
- 17Osaka, N. (1976). Reaction time as a function of peripheral retinal locus around fovea: Effect of stimulus size. Perceptual & Motor Skills, 43, 603–606. DOI: 10.2466/pms.1976.43.2.603
- 18Reike, D., & Schwarz, W. (2017). Exploring the origin of the number-size congruency effect: Sensitivity or response bias? Attention, Perception, & Psychophysics, 79, 383–388. DOI: 10.3758/s13414-016-1267-4
- 19Ren, P., Nicholls, M. R., Ma, Y., & Chen, L. (2011). Size matters: Non-numerical magnitude affects the spatial coding of response. Plos ONE, 6. DOI: 10.1371/journal.pone.0023553
- 20Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534–536. DOI: 10.1126/science.aaa1379
- 21Santens, S., & Verguts, T. (2011). The size congruity effect: Is bigger always more? Cognition, 118, 97–113. DOI: 10.1016/j.cognition.2010.10.014
- 22Schwarz, W., & Heinze, H. (1998). On the interaction of numerical and size information in digit comparison: A behavioral and event-related potential study. Neuropsychologia, 36, 1167–1179. DOI: 10.1016/S0028-3932(98)00001-3
- 23Sellaro, R., Treccani, B., Job, R., & Cubelli, R. (2015). Spatial coding of object typical size: Evidence for a SNARC-like effect. Psychological Research, 79, 950–962. DOI: 10.1007/s00426-014-0636-7
- 24Shaki, S., Petrusic, W. M., & Leth-Steensen, C. (2012). SNARC effects with numerical and non-numerical symbolic comparative judgments: Instructional and cultural dependencies. Journal of Experimental Psychology: Human Perception and Performance, 38, 515–530. DOI: 10.1037/a0026729
- 25Tagliabue, M., Zorzi, M., Umiltà, C., & Bassignani, F. (2000). The role of long-term-memory and short-term-memory links in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 26, 648–670. DOI: 10.1037/0096-1523.26.2.648
- 26Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 166–179. DOI: 10.1037/0278-7393.18.1.166
- 27Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends In Cognitive Sciences, 7, 483–488. DOI: 10.1016/j.tics.2003.09.002
- 28Walsh, V. (2015).
A theory of magnitude: The parts that sum to number . In: Kadosh, R. C., & Dowker, A. (Eds.), The Oxford handbook of numerical cognition, 552–565. New York, NY, US: Oxford University Press. - 29Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience and Biobehavioral Reviews, 57, 209–219. DOI: 10.1016/j.neubiorev.2015.09.005
- 30Zorzi, M., & Umiltà, C. (1995). A computational model of the Simon effect. Psychological Research, 58, 193–205. DOI: 10.1007/BF00419634
