Have a personal or library account? Click to login
Classic Visual Search Effects in an Additional Singleton Task: An Open Dataset Cover

Classic Visual Search Effects in an Additional Singleton Task: An Open Dataset

Open Access
|Jul 2021

References

  1. 1Adam, K. C. S., Doss, M. K., Pabon, E., Vogel, E. K., & de Wit, H. (2020). Δ9-Tetrahydrocannabinol (THC) impairs visual working memory performance: A randomized crossover trial. Neuropsychopharmacology, 45, 18071816. DOI: 10.1038/s41386-020-0690-3
  2. 2Adam, K. C. S., & Serences, J. T. (2021). History modulates early sensory processing of salient distractors. In bioRxiv. DOI: 10.1101/2020.09.30.321729
  3. 3Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485496. DOI: 10.3758/BF03205306
  4. 4Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack, T. R., Gouws, A. D., & Andrews, T. J. (2020). Power contours: Optimising sample size and precision in experimental psychology and human neuroscience. Psychological Methods. DOI: 10.1037/met0000337
  5. 5Calder-Travis, J., & Ma, W. J. (2020). Explaining the effects of distractor statistics in visual search. Journal of Vision, 20(13), 11. DOI: 10.1167/jov.20.13.11
  6. 6Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433458. DOI: 10.1037/0033-295X.96.3.433
  7. 7Feldmann-Wüstefeld, T., Weinberger, M., & Awh, E. (2021). Spatially Guided Distractor Suppression during Visual Search. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 41(14), 31803191. DOI: 10.1523/JNEUROSCI.2418-20.2021
  8. 8Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs. Psychological Science, 26(11), 17401750. DOI: 10.1177/0956797615597913
  9. 9Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception & Psychophysics, 79(1), 4562. DOI: 10.3758/s13414-016-1209-1
  10. 10Geng, J. J., Won, B.-Y., & Carlisle, N. B. (2019). Distractor Ignoring: Strategies, Learning, and Passive Filtering. Current Directions in Psychological Science, 28(6), 600606. DOI: 10.1177/0963721419867099
  11. 11JASP Team. (2020). JASP (Version 0.13.1) [Computer software]. https://jasp-stats.org
  12. 12Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? European Conference on Visual Perception (ECVP). https://pdfs.semanticscholar.org/04d4/7572cec08b7a582a9366e5ac61dcfd633f2a.pdf
  13. 13Lamy, D., Carmel, T., Egeth, H. E., & Leber, A. B. (2006). Effects of search mode and intertrial priming on singleton search. Perception & Psychophysics, 68(6), 919932. DOI: 10.3758/BF03193355
  14. 14Leber, A. B., & Egeth, H. E. (2006). Attention on autopilot: Past experience and attentional set. Visual Cognition, 14(4), 565583. DOI: 10.1080/13506280500193438
  15. 15Mihali, A., & Ma, W. J. (2020). The psychophysics of visual search with heterogeneous distractors. In bioRxiv (p. 2020.08.10.244707). DOI: 10.1101/2020.08.10.244707
  16. 16Mounts, J. R. W. (2000). Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds. Perception & Psychophysics, 62(5), 969983. DOI: 10.3758/BF03212082
  17. 17Ngiam, W. X. Q., Adam, K. C. S., Quirk, C., Vogel, E. K., & Awh, E. (2021). Estimating the statistical power to detect set size effects in contralateral delay activity. Psychophysiology, e13791. DOI: 10.1111/psyp.13791
  18. 18Pashler, H. (1988). Cross-dimensional interaction and texture segregation. Perception & Psychophysics, 43(4), 307318. DOI: 10.3758/BF03208800
  19. 19Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437442. DOI: 10.1163/156856897X00366
  20. 20Rosenholtz, R. (2001). Visual search for orientation among heterogeneous distractors: Experimental results and implications for signal-detection theory models of search. Journal of Experimental Psychology. Human Perception and Performance, 27(4), 985999. DOI: 10.1037/0096-1523.27.4.985
  21. 21Stilwell, B., & Gaspelin, N. (in press). Attentional Suppression of Highly Salient Color Singletons. Journal of Experimental Psychology. Human Perception and Performance.
  22. 22Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184193. DOI: 10.3758/BF03212219
  23. 23Theeuwes, J. (1992). Perceptual selectivity for color and form [Review of Perceptual selectivity for color and form]. Perception & Psychophysics, 51(6), 599606. DOI: 10.3758/BF03211656
  24. 24Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97136. DOI: 10.1016/0010-0285(80)90005-5
  25. 25Tseng, Y.-C., Glaser, J. I., Caddigan, E., & Lleras, A. (2014). Modeling the effect of selection history on pop-out visual search. PloS One, 9(3), e89996. DOI: 10.1371/journal.pone.0089996
  26. 26Turatto, M., & Pascucci, D. (2016). Short-term and long-term plasticity in the visual-attention system: Evidence from habituation of attentional capture. Neurobiology of Learning and Memory, 130, 159169. DOI: 10.1016/j.nlm.2016.02.010
  27. 27van Moorselaar, D., & Slagter, H. A. (2019). Learning What Is Irrelevant or Relevant: Expectations Facilitate Distractor Inhibition and Target Facilitation through Distinct Neural Mechanisms. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39(35), 69536967. DOI: 10.1523/JNEUROSCI.0593-19.2019
  28. 28Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871878. DOI: 10.3758/s13423-012-0280-4
  29. 29Wang, B., & Theeuwes, J. (2020). Salience determines attentional orienting in visual selection. Journal of Experimental Psychology. Human Perception and Performance, 46(10), 10511057. DOI: 10.1037/xhp0000796
  30. 30Won, B.-Y., & Geng, J. J. (2020). Passive exposure attenuates distraction during visual search. Journal of Experimental Psychology. General. DOI: 10.1037/xge0000760
  31. 31Xu, Z., Adam, K. C. S., Fang, X., & Vogel, E. K. (2017). The reliability and stability of visual working memory capacity. Behavior Research Methods. DOI: 10.3758/s13428-017-0886-6
DOI: https://doi.org/10.5334/joc.182 | Journal eISSN: 2514-4820
Language: English
Submitted on: May 10, 2021
Accepted on: Jul 18, 2021
Published on: Jul 28, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Kirsten C. S. Adam, Titiksha Patel, Nicole Rangan, John T. Serences, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.