Have a personal or library account? Click to login
Learning the Abstract General Task Structure in a Rapidly Changing Task Content Cover

Learning the Abstract General Task Structure in a Rapidly Changing Task Content

Open Access
|Jul 2021

References

  1. 1Abbott, V., Black, J. B., & Smith, E. E. (1985). The representation of scripts in memory. Journal of Memory and Language, 24(2), 179199. DOI: 10.1016/0749-596X(85)90023-3
  2. 2Abelson, R. P. (1981). Psychological status of the script concept. American Psychologist, 36(7), 715729. DOI: 10.1037/0003-066X.36.7.715
  3. 3Anderson, F. T., Rummel, J., & McDaniel, M. A. (2018). Proceeding with care for successful prospective memory: Do we delay ongoing responding or actively monitor for cues? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 10361050. DOI: 10.1037/xlm0000504
  4. 4Badre, D., Kayser, A. S., & D’Esposito, M. (2010). Frontal cortex and the discovery of abstract action rules. Neuron, 66(2), 315326. DOI: 10.1016/j.neuron.2010.03.025
  5. 5Brandimonte, M. A., Einstein, G. O., & McDaniel, M. A. (2014). Prospective memory: Theory and applications. Psychology Press. DOI: 10.4324/9781315806488
  6. 6Braun, D. A., Mehring, C., & Wolpert, D. M. (2010). Structure learning in action. Behavioural Brain Research, 206(2), 157165. DOI: 10.1016/j.bbr.2009.08.031
  7. 7Cole, M. W., Braver, T. S., & Meiran, N. (2017). The task novelty paradox: Flexible control of inflexible neural pathways during rapid instructed task learning. Neuroscience & Biobehavioral Reviews, 81, 415. DOI: 10.1016/j.neubiorev.2017.02.009
  8. 8Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W., & Braver, T. S. (2011). Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. Frontiers in Human Neuroscience, 5, 142. DOI: 10.3389/fnhum.2011.00142
  9. 9Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 13(1), 122. DOI: 10.3758/s13415-012-0125-7
  10. 10Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190229. DOI: 10.1037/a0030852
  11. 11Dreisbach, G. (2012). Mechanisms of cognitive control. Current Directions in Psychological Science, 21(4), 227231. DOI: 10.1177/0963721412449830
  12. 12Dreisbach, G., & Wenke, D. (2011). The shielding function of task sets and its relaxation during task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 15401546. DOI: 10.1037/a0024077
  13. 13Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56(1), 5165. DOI: 10.1037/h0062474
  14. 14Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7(2), 185207. DOI: 10.3758/BF03212979
  15. 15Heathcote, A., Loft, S., & Remington, R. W. (2015). Slow down and remember to remember! A delay theory of prospective memory costs. Psychological Review, 122(2), 376410. DOI: 10.1037/a0038952
  16. 16Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.
  17. 17Kayser, A. S., & D’Esposito, M. (2013). Abstract rule learning: The differential effects of lesions in frontal cortex. Cerebral Cortex, 23(1), 230240. DOI: 10.1093/cercor/bhs013
  18. 18Kemp, C., Goodman, N. D., & Tenenbaum, J. B. (2010). Learning to learn causal models. Cognitive Science, 34(7), 11851243. DOI: 10.1111/j.1551-6709.2010.01128.x
  19. 19Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16(3), 427438. DOI: 10.1162/089892904322926764
  20. 20Liefooghe, B., Wenke, D., & De Houwer, J. (2012). Instruction-based task-rule congruency effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 13251335. DOI: 10.1037/a0028148
  21. 21Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of the instance theory of automaticity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 883914. DOI: 10.1037/0278-7393.18.5.883
  22. 22Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314324. DOI: 10.3758/s13428-011-0168-7
  23. 23Meiran, N., Cole, M. W., & Braver, T. S. (2012). When planning results in loss of control: Intention-based reflexivity and working-memory. Frontiers in Human Neuroscience, 6(104). DOI: 10.3389/fnhum.2012.00104
  24. 24Meiran, N., Liefooghe, B., & De Houwer, J. (2017). Powerful instructions: Automaticity without practice. Current Directions in Psychological Science, 26(6), 509514. DOI: 10.1177/0963721417711638
  25. 25Meiran, N., Pereg, M., Givon, E., Danieli, G., & Shahar, N. (2016). The role of working memory in rapid instructed task learning and intention-based reflexivity: An individual differences examination. Neuropsychologia, 90, 180189. DOI: 10.1016/j.neuropsychologia.2016.06.037
  26. 26Meiran, N., Pereg, M., Kessler, Y., Cole, M. W., & Braver, T. S. (2015). The power of instructions: Proactive configuration of stimulus–response translation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 768786. DOI: 10.1037/xlm0000063
  27. 27Miller, E. K. (1999). The prefrontal cortex: Complex neural properties for complex behavior. Neuron, 22(1), 1517. DOI: 10.1016/S0896-6273(00)80673-X
  28. 28Miller, E. K. (2000). The prefontral cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 5965. DOI: 10.1038/35036228
  29. 29Nash, J. C. (2014). Nonlinear Parameter Optimization Using R Tools. John Wiley & Sons. DOI: 10.1002/9781118884003
  30. 30Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian information criterion: Background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2), 199203. DOI: 10.1002/wics.199
  31. 31Pereg, M., & Meiran, N. (2019). Rapid instructed task learning (but not automatic effects of instructions) is influenced by working memory load. PLOS ONE, 14(6), e0217681. DOI: 10.1371/journal.pone.0217681
  32. 32Pereg, M., & Meiran, N. (2020). Power of instructions for task implementation: Superiority of explicitly instructed over inferred rules. Psychological Research. DOI: 10.1007/s00426-020-01293-5
  33. 33Pereg, M., Shahar, N., & Meiran, N. (2019). Can we Learn to Learn? The Influence of Procedural Working-Memory Training on Rapid Instructed-Task-Learning. Psychological Research, 83(1), 132146. DOI: 10.1007/s00426-018-1122-4
  34. 34Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS. Springer Science & Business Media.
  35. 35Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psyhology, 56(5), 356374. DOI: 10.1016/j.jmp.2012.08.001
  36. 36Ruge, H., & Wolfensteller, U. (2010). Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cerebral Cortex, 20(7), 16561667. DOI: 10.1093/cercor/bhp228
  37. 37Sabah, K., Dolk, T., Meiran, N., & Dreisbach, G. (2019). When less is more: Costs and benefits of varied vs. fixed content and structure in short-term task switching training. Psychological Research, 83(7), 15311542. DOI: 10.1007/s00426-018-1006-7
  38. 38Sabah, K., Dolk, T., Meiran, N., & Dreisbach, G. (2020). Enhancing task-demands disrupts learning but enhances transfer gains in short-term task-switching training. Psychological Research. DOI: 10.1007/s00426-020-01335-y
  39. 39Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461464. DOI: 10.1214/aos/1176344136
  40. 40Shahar, N., Pereg, M., Teodorescu, A. R., Moran, R., Karmon-Presser, A., & Meiran, N. (2018). Formation of abstract task representations: Exploring dosage and mechanisms of working memory training effects. Cognition, 181, 151159. DOI: 10.1016/j.cognition.2018.08.007
  41. 41Smith, R. E. (2003). The cost of remembering to remember in event-based prospective memory: Investigating the capacity demands of delayed intention performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 347361. DOI: 10.1037/0278-7393.29.3.347
  42. 42Smith, R. E., & Bayen, U. J. (2005). The Effects of Working Memory Resource Availability on Prospective Memory. Experimental Psychology, 52(4), 243256. DOI: 10.1027/1618-3169.52.4.243
  43. 43Thorndyke, P. W., & Yekovich, F. R. (1980). A critique of schema-based theories of human story memory. Poetics, 9(1), 2349. DOI: 10.1016/0304-422X(80)90011-X
  44. 44Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., Witter, M. P., & Morris, R. G. M. (2007). Schemas and memory consolidation. Science, 316(5821), 7682. DOI: 10.1126/science.1135935
  45. 45Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychological Bulletin, 127(1), 321. DOI: 10.1037/0033-2909.127.1.3
DOI: https://doi.org/10.5334/joc.176 | Journal eISSN: 2514-4820
Language: English
Submitted on: Dec 23, 2020
Accepted on: Jun 17, 2021
Published on: Jul 7, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Maayan Pereg, Danielle Harpaz, Katrina Sabah, Mattan S. Ben-Shachar, Inbar Amir, Gesine Dreisbach, Nachshon Meiran, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.