Have a personal or library account? Click to login
An Investigation of the Slope Parameters of Reaction Times and P3 Latencies in the Sternberg Memory Scanning Task – A Fixed-Links Model Approach Cover

An Investigation of the Slope Parameters of Reaction Times and P3 Latencies in the Sternberg Memory Scanning Task – A Fixed-Links Model Approach

Open Access
|Apr 2021

References

  1. 1Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. B. N. Petrov & F. Csaki (Eds.). Akademiai Kiado. pp. 267281.
  2. 2Bazana, P. G., & Stelmack, R. M. (2002). Intelligence and information processing during an auditory discrimination task with backward masking: An event-related potential analysis. Journal of Personality and Social Psychology, 83, 9981008. DOI: 10.1037/0022-3514.83.4.998
  3. 3Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238246. DOI: 10.1037/0033-2909.107.2.238
  4. 4Bentler, P. M. (1995). EQS structural equations program manual. Multivariate Software.
  5. 5Bentler, P. M., & Hu, L. T. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 155. DOI: 10.1080/10705519909540118
  6. 6Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. Model Selection and Multimodel Inference, 2.
  7. 7Carter, R. C., Krause, M., & Harberson, M. M. (1986). Beware the Reliability of Slope Scores for individuals. Human Factores, 28(6), 673683. DOI: 10.1177/001872088602800605
  8. 8Chiang, A., & Atkinson, R. C. (1976). Individual differences and interrelationships among a select set of cognitive skills. Memory & Cognition, 4(6), 661672. DOI: 10.3758/BF03213232
  9. 9Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. ed.). Erlbaum.
  10. 10Delorme, A., & Makeig, S. (2004). Eeglab: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 921. DOI: 10.1016/j.jneumeth.2003.10.009
  11. 11Doebler, P., & Scheffler, B. (2016). The relationship of choice reaction time variability and intelligence: A meta-analysis. Learning and Individual Differences, 52, 157166. DOI: 10.1016/j.lindif.2015.02.009
  12. 12Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357372. DOI: 10.1017/S0140525X00058027
  13. 13Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power analysis program. Behavior Research Methods, Instruments & Computers, 28(1), 111. DOI: 10.3758/BF03203630
  14. 14Ergen, M., Yildirim, E., Uslu, A., Gürvit, H., & Demiralp, T. (2012). P3 response during short-term memory retrieval revisited by a spatio-temporal analysis. International Journal of Psychophysiology, 84(2), 205210. DOI: 10.1016/j.ijpsycho.2012.02.009
  15. 15Euler, M. J., McKinney, T. L., Schryver, H. M., & Okabe, H. (2017). ERP correlates of the decision time-IQ relationship: The role of complexity in task- and brain-IQ effects. Intelligence, 65, 110. DOI: 10.1016/j.intell.2017.08.003
  16. 16Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 1126. DOI: 10.1080/17470215208416600
  17. 17Houlihan, M. (1998). Intelligence and the effects of perceptual processing demands, task difficulty and processing speed on P300, reaction time and movement time. Intelligence, 26(1), 925. DOI: 10.1016/S0160-2896(99)80049-X
  18. 18Jäger, A. O. (1982). Mehrmodale Klassifikation von Intelligenzleistungen: Experimentell kontrollierte Weiterentwicklung eines deskriptiven Intelligenzstrukturmodells. Diagnostica, 28, 195225.
  19. 19Jäger, A. O., Süß, H. M., & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test: BIS-Test. Hogrefe.
  20. 20JASP Team. (2019). JASP (Version 0.11.1) [Computer software]. https://jasp-stats.org/
  21. 21Jensen, A. R. (1987). Process differences and individual differences in some cognitive tasks. Intelligence, 11, 107136. DOI: 10.1016/0160-2896(87)90001-8
  22. 22Jensen, A. R. (1992). The importance of intraindividual variation in reaction time. Personality and Individual Differences, 13(8), 869881. DOI: 10.1016/0191-8869(92)90004-9
  23. 23Jensen, A. R. (1998). The suppressed relationship between IQ and the reaction time slope parameter of the Hick function. Intelligence, 26(1), 4352. DOI: 10.1016/S0160-2896(99)80051-8
  24. 24Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Elsvier.
  25. 25Kapanci, T., Merks, S., Rammsayer, T. H., & Troche, S. J. (2019). On the Relationship between P3 Latency and Mental Ability as a Function of Increasing Demands in a Selective Attention Task. Brain Sciences, 9(2), 112. DOI: 10.3390/brainsci9020028
  26. 26Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2019). MVN: An R Package for Assessing Multivariate Normality [Computer software]. https://cran.r-project.org/web/packages/MVN/vignettes/MVN.pdf
  27. 27Kretzschmar, A., & Gignac, G. E. (2019). At what sample size do latent variable correlations stabilize? Journal of Research in Personality, 80, 1722. DOI: 10.1016/j.jrp.2019.03.007
  28. 28Kretzschmar, A., Spengler, M., Schubert, A. L., Steinmayr, R., & Ziegler, M. (2018). The Relation of Personality and Intelligence—What Can the Brunswik Symmetry Principle Tell Us? Journal of Intelligence, 6(30), 138. DOI: 10.3390/jintelligence6030030
  29. 29Luck, S. J. (2005). An introduction to the event-related potential technique. Cognitive neuroscience. MIT Press.
  30. 30McCarthy, G., & Donchin, E. (1981). A Metric for Thought: A Comparison of P300 Latency and Reaction Time. Science, 211(4477), 7780. DOI: 10.1126/science.7444452
  31. 31McGarry-Roberts, P., Stelmack, R. M., & Campbell, K. B. (1992). Intelligence and reaction time and event-related potentials. Intelligence, 16, 289313. DOI: 10.1016/0160-2896(92)90011-F
  32. 32Neubauer, A. C., Riemann, R., Mayer, R., & Angleitner, A. (1997). Intelligence and reaction times in the Hick, Sternberg and Posner paradigms. Personality and Individual Differences, 22(6), 885894. DOI: 10.1016/S0191-8869(97)00003-2
  33. 33Pelosi, L., McHayward, M., & Blumhardt, L. D. (1995). Is “memory-scanning” time in the Sternberg paradigm reflected in the latency of event-related potentials? Electroencephalography and Clinical Neurophysiology, 96, 4455. DOI: 10.1016/0013-4694(94)00163-F
  34. 34Polich, J. (1997). EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology, 104(1997), 244256. DOI: 10.1016/S0168-5597(97)96139-6
  35. 35Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 21282148. DOI: 10.1016/j.clinph.2007.04.019
  36. 36Rammsayer, T. H., Pahud, O., & Troche, S. J. (2017). Decomposing the functional relationship between speed of information processing in the Hick paradigm and mental ability: A fixed-links modeling approach. Personality and Individual Differences, 118, 1721. DOI: 10.1016/j.paid.2017.01.050
  37. 37Raven, J. C., Court, J. H., & Raven, J. (1994). Manual for Raven’s progressive matrices and mill hill vocabulary scales. Advanced progressive matrices. Oxford University Press.
  38. 38Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 136. DOI: 10.18637/jss.v048.i02
  39. 39Saville, C. W. N., Beckles, K. D. O., MacLeod, C. A., Feige, B., Biscaldi, M., Beauducel, A., & Klein, C. (2015). A neural analogue of the worst performance rule: Insights from single-trial event-related potentials. Intelligence, 55, 95103. DOI: 10.1016/j.intell.2015.12.005
  40. 40Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods of Psychological Research Online, 8(2), 2347.
  41. 41Schubert, A. L. (2019). A meta-analysis of the worst performance rule. Intelligence, 73, 88100. DOI: 10.1016/j.intell.2019.02.003
  42. 42Schubert, A. L., & Frischkorn, G. T. (2020). Neurocognitive Psychometrics of Intelligence: How Measurement Advancements Unveiled the Role of Mental Speed in Intelligence Differences. Current Directions in Psychological Science, 29(2), 140146. DOI: 10.1177/0963721419896365
  43. 43Schubert, A. L., Hagemann, D., & Frischkorn, G. T. (2017). Is general intelligence little more than the speed of higher-order processing? Journal of Experimental Psychology: General, 146(10), 14981512. DOI: 10.1037/xge0000325
  44. 44Schubert, A. L., Hagemann, D., Frischkorn, G. T., & Herpertz, S. C. (2018). Faster, but not smarter: A psychopharmacological analysis of the relationship between neural processing speed, reaction times and mental abilities. Intelligence, 71, 6675. DOI: 10.1016/j.intell.2018.10.005
  45. 45Schubert, A. L., Hagemann, D., Voss, A., Schankin, A., & Bergmann, K. (2015). Decomposing the relationship between mental speed and mental abilities. Intelligence, 51, 2846. DOI: 10.1016/j.intell.2015.05.002
  46. 46Schubert, A. L., Nunez, M. D., Hagemann, D., & Vandekerckhove, J. (2019). Individual differences in cortical processing speeds predict cognitive abilities: A model-based cognitive neuroscience account. Computational Brain and Behavior, 2, 6484. DOI: 10.1007/s42113-018-0021-5
  47. 47Schweizer, K. (2006). The fixed-links model for investigating the effects of general and specific processes on intelligence. Methodology, 2(4), 149160. DOI: 10.1027/1614-2241.2.4.149
  48. 48Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44(3), 535551. DOI: 10.1016/j.paid.2007.09.015
  49. 49Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652654. DOI: 10.1126/science.153.3736.652
  50. 50Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421457.
  51. 51Troche, S. J., Indermühle, R., Leuthold, H., & Rammsayer, T. H. (2015). Intelligence and the psychological refractory period: A lateralized readiness potential study. Intelligence, 53, 138144. DOI: 10.1016/j.intell.2015.10.003
  52. 52Troche, S. J., & Rammsayer, T. H. (2009). The influence of temporal resolution power and working memory capacity on psychometric intelligence. Intelligence, 37(5), 479486. DOI: 10.1016/j.intell.2009.06.001
  53. 53Verleger, R., Baur, N., Metzner, M. F., & Smigasiewicz, K. (2014). The hard oddball: Effects of difficult response selection on stimulus-related P3 and on response-related negative potentials. Psychophysiology, 51(11), 10891100. DOI: 10.1111/psyp.12262
  54. 54Verleger, R., Siller, B., Ouyang, G., & Śmigasiewicz, K. (2017). Effects on P3 of spreading targets and response prompts apart. Biological Psychology, 126, 111. DOI: 10.1016/j.biopsycho.2017.03.011
  55. 55Wechsler, D. (1981). WAIS-R: Wechsler adult intelligence scale-revised. Psychological Corporation.
  56. 56West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with non-normal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 5675). SAGE Publications.
DOI: https://doi.org/10.5334/joc.158 | Journal eISSN: 2514-4820
Language: English
Submitted on: Oct 27, 2020
Accepted on: Apr 6, 2021
Published on: Apr 29, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Henrike M. Jungeblut, Dirk Hagemann, Christoph Löffler, Anna-Lena Schubert, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.