References
- 1Akaike, H. (1973).
Information theory and an extension of the maximum likelihood principle . B. N. Petrov & F. Csaki (Eds.). Akademiai Kiado. pp. 267–281. - 2Bazana, P. G., & Stelmack, R. M. (2002). Intelligence and information processing during an auditory discrimination task with backward masking: An event-related potential analysis. Journal of Personality and Social Psychology, 83, 998–1008. DOI: 10.1037/0022-3514.83.4.998
- 3Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. DOI: 10.1037/0033-2909.107.2.238
- 4Bentler, P. M. (1995). EQS structural equations program manual. Multivariate Software.
- 5Bentler, P. M., & Hu, L. T. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. DOI: 10.1080/10705519909540118
- 6Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. Model Selection and Multimodel Inference, 2.
- 7Carter, R. C., Krause, M., & Harberson, M. M. (1986). Beware the Reliability of Slope Scores for individuals. Human Factores, 28(6), 673–683. DOI: 10.1177/001872088602800605
- 8Chiang, A., & Atkinson, R. C. (1976). Individual differences and interrelationships among a select set of cognitive skills. Memory & Cognition, 4(6), 661–672. DOI: 10.3758/BF03213232
- 9Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. ed.). Erlbaum.
- 10Delorme, A., & Makeig, S. (2004). Eeglab: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. DOI: 10.1016/j.jneumeth.2003.10.009
- 11Doebler, P., & Scheffler, B. (2016). The relationship of choice reaction time variability and intelligence: A meta-analysis. Learning and Individual Differences, 52, 157–166. DOI: 10.1016/j.lindif.2015.02.009
- 12Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357–372. DOI: 10.1017/S0140525X00058027
- 13Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power analysis program. Behavior Research Methods, Instruments & Computers, 28(1), 1–11. DOI: 10.3758/BF03203630
- 14Ergen, M., Yildirim, E., Uslu, A., Gürvit, H., & Demiralp, T. (2012). P3 response during short-term memory retrieval revisited by a spatio-temporal analysis. International Journal of Psychophysiology, 84(2), 205–210. DOI: 10.1016/j.ijpsycho.2012.02.009
- 15Euler, M. J., McKinney, T. L., Schryver, H. M., & Okabe, H. (2017). ERP correlates of the decision time-IQ relationship: The role of complexity in task- and brain-IQ effects. Intelligence, 65, 1–10. DOI: 10.1016/j.intell.2017.08.003
- 16Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 11–26. DOI: 10.1080/17470215208416600
- 17Houlihan, M. (1998). Intelligence and the effects of perceptual processing demands, task difficulty and processing speed on P300, reaction time and movement time. Intelligence, 26(1), 9–25. DOI: 10.1016/S0160-2896(99)80049-X
- 18Jäger, A. O. (1982). Mehrmodale Klassifikation von Intelligenzleistungen: Experimentell kontrollierte Weiterentwicklung eines deskriptiven Intelligenzstrukturmodells. Diagnostica, 28, 195–225.
- 19Jäger, A. O., Süß, H. M., & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test: BIS-Test. Hogrefe.
- 20JASP Team. (2019). JASP (Version 0.11.1) [Computer software].
https://jasp-stats.org/ - 21Jensen, A. R. (1987). Process differences and individual differences in some cognitive tasks. Intelligence, 11, 107–136. DOI: 10.1016/0160-2896(87)90001-8
- 22Jensen, A. R. (1992). The importance of intraindividual variation in reaction time. Personality and Individual Differences, 13(8), 869–881. DOI: 10.1016/0191-8869(92)90004-9
- 23Jensen, A. R. (1998). The suppressed relationship between IQ and the reaction time slope parameter of the Hick function. Intelligence, 26(1), 43–52. DOI: 10.1016/S0160-2896(99)80051-8
- 24Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Elsvier.
- 25Kapanci, T., Merks, S., Rammsayer, T. H., & Troche, S. J. (2019). On the Relationship between P3 Latency and Mental Ability as a Function of Increasing Demands in a Selective Attention Task. Brain Sciences, 9(2), 1–12. DOI: 10.3390/brainsci9020028
- 26Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2019). MVN: An R Package for Assessing Multivariate Normality [Computer software].
https://cran.r-project.org/web/packages/MVN/vignettes/MVN.pdf - 27Kretzschmar, A., & Gignac, G. E. (2019). At what sample size do latent variable correlations stabilize? Journal of Research in Personality, 80, 17–22. DOI: 10.1016/j.jrp.2019.03.007
- 28Kretzschmar, A., Spengler, M., Schubert, A. L., Steinmayr, R., & Ziegler, M. (2018). The Relation of Personality and Intelligence—What Can the Brunswik Symmetry Principle Tell Us? Journal of Intelligence, 6(30), 1–38. DOI: 10.3390/jintelligence6030030
- 29Luck, S. J. (2005).
An introduction to the event-related potential technique . Cognitive neuroscience. MIT Press. - 30McCarthy, G., & Donchin, E. (1981). A Metric for Thought: A Comparison of P300 Latency and Reaction Time. Science, 211(4477), 77–80. DOI: 10.1126/science.7444452
- 31McGarry-Roberts, P., Stelmack, R. M., & Campbell, K. B. (1992). Intelligence and reaction time and event-related potentials. Intelligence, 16, 289–313. DOI: 10.1016/0160-2896(92)90011-F
- 32Neubauer, A. C., Riemann, R., Mayer, R., & Angleitner, A. (1997). Intelligence and reaction times in the Hick, Sternberg and Posner paradigms. Personality and Individual Differences, 22(6), 885–894. DOI: 10.1016/S0191-8869(97)00003-2
- 33Pelosi, L., McHayward, M., & Blumhardt, L. D. (1995). Is “memory-scanning” time in the Sternberg paradigm reflected in the latency of event-related potentials? Electroencephalography and Clinical Neurophysiology, 96, 44–55. DOI: 10.1016/0013-4694(94)00163-F
- 34Polich, J. (1997). EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology, 104(1997), 244–256. DOI: 10.1016/S0168-5597(97)96139-6
- 35Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. DOI: 10.1016/j.clinph.2007.04.019
- 36Rammsayer, T. H., Pahud, O., & Troche, S. J. (2017). Decomposing the functional relationship between speed of information processing in the Hick paradigm and mental ability: A fixed-links modeling approach. Personality and Individual Differences, 118, 17–21. DOI: 10.1016/j.paid.2017.01.050
- 37Raven, J. C., Court, J. H., & Raven, J. (1994). Manual for Raven’s progressive matrices and mill hill vocabulary scales. Advanced progressive matrices. Oxford University Press.
- 38Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. DOI: 10.18637/jss.v048.i02
- 39Saville, C. W. N., Beckles, K. D. O., MacLeod, C. A., Feige, B., Biscaldi, M., Beauducel, A., & Klein, C. (2015). A neural analogue of the worst performance rule: Insights from single-trial event-related potentials. Intelligence, 55, 95–103. DOI: 10.1016/j.intell.2015.12.005
- 40Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods of Psychological Research Online, 8(2), 23–47.
- 41Schubert, A. L. (2019). A meta-analysis of the worst performance rule. Intelligence, 73, 88–100. DOI: 10.1016/j.intell.2019.02.003
- 42Schubert, A. L., & Frischkorn, G. T. (2020). Neurocognitive Psychometrics of Intelligence: How Measurement Advancements Unveiled the Role of Mental Speed in Intelligence Differences. Current Directions in Psychological Science, 29(2), 140–146. DOI: 10.1177/0963721419896365
- 43Schubert, A. L., Hagemann, D., & Frischkorn, G. T. (2017). Is general intelligence little more than the speed of higher-order processing? Journal of Experimental Psychology: General, 146(10), 1498–1512. DOI: 10.1037/xge0000325
- 44Schubert, A. L., Hagemann, D., Frischkorn, G. T., & Herpertz, S. C. (2018). Faster, but not smarter: A psychopharmacological analysis of the relationship between neural processing speed, reaction times and mental abilities. Intelligence, 71, 66–75. DOI: 10.1016/j.intell.2018.10.005
- 45Schubert, A. L., Hagemann, D., Voss, A., Schankin, A., & Bergmann, K. (2015). Decomposing the relationship between mental speed and mental abilities. Intelligence, 51, 28–46. DOI: 10.1016/j.intell.2015.05.002
- 46Schubert, A. L., Nunez, M. D., Hagemann, D., & Vandekerckhove, J. (2019). Individual differences in cortical processing speeds predict cognitive abilities: A model-based cognitive neuroscience account. Computational Brain and Behavior, 2, 64–84. DOI: 10.1007/s42113-018-0021-5
- 47Schweizer, K. (2006). The fixed-links model for investigating the effects of general and specific processes on intelligence. Methodology, 2(4), 149–160. DOI: 10.1027/1614-2241.2.4.149
- 48Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44(3), 535–551. DOI: 10.1016/j.paid.2007.09.015
- 49Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654. DOI: 10.1126/science.153.3736.652
- 50Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421–457.
- 51Troche, S. J., Indermühle, R., Leuthold, H., & Rammsayer, T. H. (2015). Intelligence and the psychological refractory period: A lateralized readiness potential study. Intelligence, 53, 138–144. DOI: 10.1016/j.intell.2015.10.003
- 52Troche, S. J., & Rammsayer, T. H. (2009). The influence of temporal resolution power and working memory capacity on psychometric intelligence. Intelligence, 37(5), 479–486. DOI: 10.1016/j.intell.2009.06.001
- 53Verleger, R., Baur, N., Metzner, M. F., & Smigasiewicz, K. (2014). The hard oddball: Effects of difficult response selection on stimulus-related P3 and on response-related negative potentials. Psychophysiology, 51(11), 1089–1100. DOI: 10.1111/psyp.12262
- 54Verleger, R., Siller, B., Ouyang, G., & Śmigasiewicz, K. (2017). Effects on P3 of spreading targets and response prompts apart. Biological Psychology, 126, 1–11. DOI: 10.1016/j.biopsycho.2017.03.011
- 55Wechsler, D. (1981). WAIS-R: Wechsler adult intelligence scale-revised. Psychological Corporation.
- 56West, S. G., Finch, J. F., & Curran, P. J. (1995).
Structural equation models with non-normal variables: Problems and remedies . In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56–75). SAGE Publications.
