References
- 1Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131–1136. DOI: 10.1037/h0037361
- 2DeStefano, D., & LeFevre, J.-A. (2004). The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 16(3), 353–386. DOI: 10.1080/09541440244000328
- 3Diedenhofen, B., & Musch, J. (2015). cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLOS ONE, 10(4),
e0121945 . DOI: 10.1371/journal.pone.0121945 - 4Franklin, M. S., Jonides, J., & Smith, E. E. (2009). Processing of order information for numbers and months. Memory & Cognition, 37(5), 644–654. DOI: 10.3758/MC.37.5.644
- 5Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Washington, DC: American Psychological Association.
- 6Goffin, C., & Ansari, D. (2016). Beyond magnitude: Judging ordinality of symbolic number is unrelated to magnitude comparison and independently relates to individual differences in arithmetic. Cognition, 150, 68–76. DOI: 10.1016/j.cognition.2016.01.018
- 7Hitch, G. J. (1978). The role of short-term working memory in mental arithmetic. Cognitive Psychology, 10(3), 302–323. DOI: 10.1016/0010-0285(78)90002-6
- 8Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. DOI: 10.2307/2529310
- 9LeFevre, J.-A., & Bisanz, J. (1986). A cognitive analysis of number series problems: Sources of individual differences in performance. Memory & Cognition, 14(4), 287–298. DOI: 10.3758/BF03202506
- 10LeFevre, J.-A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(1), 216–230. DOI: 10.1037/0278-7393.22.1.216
- 11Lemaire, P. (2016).
Cognitive aging: The role of strategies . Psychology Press. DOI: 10.4324/9781315650999 - 12Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to children’s learning of multiplication. Journal of Experimental Psychology: General, 124(1), 83–97. DOI: 10.1037/0096-3445.124.1.83
- 13Lyons, I. M., & Beilock, S. L. (2013). Ordinality and the nature of symbolic numbers. Journal of Neuroscience, 33(43), 17052–17061. DOI: 10.1523/JNEUROSCI.1775-13.2013
- 14Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17(5), 714–726. DOI: 10.1111/desc.12152
- 15Lyons, I. M., Vogel, S. E., & Ansari, D. (2016). On the ordinality of numbers: A review of neural and behavioral studies. Progress in Brain Research, 227, 187–221. DOI: 10.1016/bs.pbr.2016.04.010
- 16Morsanyi, K., O’Mahoney, E., & McCormack, T. (2016). Number comparison and number ordering as predictors of arithmetic performance in adults: Exploring the link between the two skills, and investigating the question of domain- specificity. Quarterly Journal of Experimental Psychology, 70, 2497–2517. DOI: 10.1080/17470218.2016.1246577
- 17Morsanyi, K., van Bers, B. M. C. W., O’Connor, P., & McCormack, T. (2018). Developmental Dyscalculia is Characterized by Order Processing Deficits: Evidence from Numerical and Non-Numerical Ordering Tasks. Developmental Neuropsychology, 43(7), 595–621. DOI: 10.1080/87565641.2018.1502294
- 18Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. DOI: 10.1038/2151519a0
- 19Paul, J., Reeve, R. A., & Forte, J. A. (2020). Enumeration strategy differences revealed by saccade-terminated eye tracking. Cognition, 198(1), 104204. DOI: 10.1016/j.cognition.2020.104204
- 20Robinson, K. M. (2001). The validity of verbal reports in children’s subtraction. Journal of Educational Psychology, 93(1), 211–222. DOI: 10.1037/0022-0663.93.1.211
- 21Rubinsten, O., Dana, S., Lavro, D., & Berger, A. (2013). Processing ordinality and quantity: ERP evidence of separate mechanisms. Brain and Cognition, 82(2), 201–212. DOI: 10.1016/j.bandc.2013.04.008
- 22Rubinsten, O., & Sury, D. (2011). Processing ordinality and quantity: The case of developmental dyscalculia. PLoS ONE, 6(9). DOI: 10.1371/journal.pone.0024079
- 23Sasanguie, D., Lyons, I., De Smedt, B., & Reynvoet, B. (2017). Unpacking symbolic number comparison and its relation with arithmetic in adults. Cognition, 165, 26–38. DOI: 10.1016/j.cognition.2017.04.007
- 24Sasanguie, D., & Vos, H. (2018). About why there is a shift from cardinal to ordinal processing in the association with arithmetic between first and second grades. Developmental Science, 21(5), 1–13. DOI: 10.1111/desc.12653
- 25Sella, F., Re, A. M., Lucangeli, D., Cornoldi, C., & Lemaire, P. (2019). Strategy Selection in ADHD Characteristics Children: A Study in Arithmetic. Journal of Attention Disorders, 23(1), 87–98. DOI: 10.1177/1087054712438766
- 26Sella, F., Sasanguie, D., & Reynvoet, B. (2020). Judging the order of numbers relies on familiarity rather than activating the mental number line. Acta Psychologica, 204(6), 103014. DOI: 10.1016/j.actpsy.2020.103014
- 27Serra, M., & Nairne, J. S. (2000). Part-set cuing of order information: implications for associative theories of serial order memory. Memory & Cognition, 28(5), 847–855. DOI: 10.3758/BF03198420
- 28Siegler, R. S. (1989). Hazards of mental chronometry: An example from children’s subtraction. Journal of Educational Psychology, 81(4), 497–506. DOI: 10.1037/0022-0663.81.4.497
- 29Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377–397. DOI: 10.1037/0096-3445.127.4.377
- 30Sommerauer, G., Graß, K. H., Grabner, R. H., & Vogel, S. E. (2020). The semantic control network mediates the relationship between symbolic numerical order processing and arithmetic performance in children. Neuropsychologia, 141. DOI: 10.1016/j.neuropsychologia.2020.107405
- 31Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245–251. DOI: 10.1037/0033-2909.87.2.245
- 32Torbeyns, J., Peters, G., De Smedt, B., Ghesquière, P., Verschaffel, L. (2016). Children’s understanding of the addition/subtraction complement principle. British Journal of Educational Psychology, 86, 382–396. DOI: 10.1111/bjep.12113
- 33Torbeyns, J., Verschaffel, L. (2016). Mental computation or standard algorithm? Children’s strategy choices on multi-digit subtractions. European Journal of Psychology of Education, 31, 99–116. DOI: 10.1007/s10212-015-0255-8
- 34Turconi, E., Campbell, J. I. D., & Seron, X. (2006). Numerical order and quantity processing in number comparison. Cognition, 98(3), 273–285. DOI: 10.1016/j.cognition.2004.12.002
- 35Turconi, E., Jemel, B., Rossion, B., & Seron, X. (2004). Electrophysiological evidence for differential processing of numerical quantity and order in humans. Cognitive Brain Research, 21(1), 22–38. DOI: 10.1016/j.cogbrainres.2004.05.003
- 36van’t Noordende, J. E., van Hoogmoed, A. H., Schot, W. D., & Kroesbergen, E. H. (2016). Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking. Psychological Research, 80(3), 368–378. DOI: 10.1007/s00426-015-0736-z
- 37Vogel, S. E., Haigh, T., Sommerauer, G., Spindler, M., Brumner, C., Lyons, I. M., & Grabner, R. (2017). Processing the order of symbolic numbers: A reliable and unique predictor of arithmetic fluency. Journal of Numerical Cognition, 3(2), 288–308. DOI: 10.5964/jnc.v3i2.55
- 38Vogel, S. E., Koren, N., Falb, S., Haselwander, M., Spradley, A., Schadenbauer, P., Tanzmeister, S., & Grabner, R. H. (2019). Automatic and intentional processing of numerical order and its relationship to arithmetic performance. Acta Psychologica, 193, 30–41. DOI: 10.1016/j.actpsy.2018.12.001
- 39Vogel, S. E., Remark, A., & Ansari, D. (2014). Differential processing of symbolic numerical magnitude and order in first- grade children. Journal of Experimental Child Psychology, 129, 26–39. DOI: 10.1016/j.jecp.2014.07.010
