References
- 1Botvinick, M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. DOI: 10.1037//0033-295X.108.3.624
- 2Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: Is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychologic Belgica, 51(1), 5–13. DOI: 10.5334/pb-51-1-5
- 3Dennis, I., & Evans, J. S. B. T. (1996). The speed-error trade-off problem in psychometric testing. British Journal of Psychology, 87(1), 105–129. DOI: 10.1111/j.2044-8295.1996.tb02579.x
- 4Dutilh, G., Wagenmakers, E.-J., Visser, I., & van der Maas, H. L. J. (2011). A phase transition model for the speed-accuracy trade-off in response time experiments. Cognitive Science, 35, 211–250. DOI: 10.1111/j.1551-6709.2010.01147.x
- 5Fitts, P. M. (1966). Cognitive aspects of information processing: III. Set for speed versus accuracy. Journal of Experimental Psychology, 71(6), 849–857. DOI: 10.1037/h0023232
- 6Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Ulerich, R., et al. (2019). Gnu scientific library. Release 2.6.
- 7Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480–506. DOI: 10.1037/0096-3445.121.4.480
- 8Heitz, R. P. (2014). The speed-accuracy tradeoff: Methodology, and behavior. Frontiers in Neuroscience, 8. DOI: 10.3389/fnins.2014.00150
- 9Hughes, M. M., Linck, J. A., Bowles, A. R., Koeth, J. T., & Bunting, M. F. (2014). Alternatives to switch-cost scoring in the task-switching paradigm: Their reliability and increased validity. Behavior Research Methods, 46(3), 702–721. DOI: 10.3758/s13428-013-0411-5
- 10Laming, D. R. J. (1968). Information theory of choice-reaction times. London: Academic Press.
- 11Liesefeld, H. R., & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy trade-offs(?) Behavior Research Methods, 51(1), 40–60. DOI: 10.3758/s13428-018-1076-x
- 12Logan, G. D., & Gordon, R. D. (2001). Executive control of attention in dual-task situations. Psychological Review, 108, 393–434. DOI: 10.1037/0033-295X.108.2.393
- 13Maris, G., & van der Maas, H. (2012). Speed-accuracy response models: Scoring rules based on response time and accuracy. Psychometrika, 77(4), 615–633. DOI: 10.1007/s11336-012-9288-y
- 14Ollman, R. T. (1966). Fast guesses in choice reaction time. Psychonomic Science, 6, 155–156. DOI: 10.3758/BF03328004
- 15Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. DOI: 10.1037//0033-295X.85.2.59
- 16Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481. DOI: 10.3758/BF03196302
- 17Stafford, T., Pirrone, A., Croucher, M., & Krystalli, A. (2020). Quantifying the benefits of using decision models with response time and accuracy data. Behavior Research Methods. DOI: 10.3758/s13428-020-01372-w
- 18Thorne, D. R. (2006). Throughput: A simple performance index with desirable characteristics. Behavior Research Methods, 38(4), 569–573. DOI: 10.3758/BF03193886
- 19Townsend, J. T., & Ashby, F. G. (1978).
Methods of modeling capacity in simple processing systems . In Castellan, N. J.,Jr. , & Restle, F. (Eds.), Cognitive theory 3, 199–239. New York: Lawrence Erlbaum Associates. - 20Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge University Press.
- 21Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A comparison of four methods for simulating the diffusion process. Behavior Research Methods, Instruments, & Computers, 33(4), 443–456. DOI: 10.3758/BF03195402
- 22Van der Linden, W. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287–308. DOI: 10.1007/s11336-006-1478-z
- 23van der Maas, H. L. J., Molenaar, D., Maris, G., Kievit, R., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118(2), 339–356. DOI: 10.1037/a0022749
- 24van der Maas, H. L. J., & Wagenmakers, E. (2005). A psychometric analysis of chess expertise. American Journal of Psychology, 118(1), 29–60.
- 25Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review, 14(6), 1011–1026. DOI: 10.3758/BF03193087
- 26Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis with matlab: A dmat primer. Behavior Research Methods, 40(1), 61–72. DOI: 10.3758/BRM.40.1.61
- 27Vandierendonck, A. (2017). A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behavior Research Methods, 49(2), 653–673. DOI: 10.3758/s13428-016-0721-5
- 28Vandierendonck, A. (2018). Further tests of the utility of integrated speed-accuracy measures in task switching. Journal of Cognition, 1(8), 1–16. DOI: 10.5334/joc.6
- 29Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 39(4), 767–775. DOI: 10.3758/BF03192967
- 30Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14(1), 3–22. DOI: 10.3758/BF03194023
- 31Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41(1), 67–85. DOI: 10.1016/0001-6918(77)90012-9
- 32Woltz, D. J., & Was, C. A. (2006). Availability of related long-term memory during and after attention focus in working memory. Memory & Cognition, 34(3), 668–684. DOI: 10.3758/BF03193587
- 33Yellott, J. I. (1971). Correction for fast guessing and the speed-accuracy tradeoff in choice reaction time. Journal of Mathematical Psychology, 8(2), 159–199. DOI: 10.1016/0022-2496(71)90011-3
