Have a personal or library account? Click to login
Multiple Routes to Control in the Prime-Target Task: Congruence Sequence Effects Emerge Due to Modulation of Irrelevant Prime Activity and Utilization of Temporal Order Information Cover

Multiple Routes to Control in the Prime-Target Task: Congruence Sequence Effects Emerge Due to Modulation of Irrelevant Prime Activity and Utilization of Temporal Order Information

Open Access
|Mar 2021

References

  1. Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14(10), 13381344. DOI: 10.1038/nn.2921
  2. Allport, A. (1987). Selection for action: Some behavioral and neurophysiological considerations of attention and action. In H. Heuer & A. F. Sanders (Eds.), Perspectives on perception and action (pp. 395419). Hillsdale, NJ: Erlbaum.
  3. Badre, D., Kayser, A. S., & D’Esposito, M. (2010). Frontal cortex and the discovery of abstract action rules. Neuron, 66(2), 315326. DOI: 10.1016/j.neuron.2010.03.025
  4. Berger, A., Mitschke, V., Dignath, D., Eder, A., & van Steenbergen, H. (2020). The face of control: Corrugator supercilii tracks aversive conflict signals in the service of adaptive cognitive control. Psychophysiology.
  5. Bogon, J., Thomaschke, R., & Dreisbach, G. (2017). Binding time: Evidence for integration of temporal stimulus features. Attention, Perception, & Psychophysics, 79(5), 12901296. DOI: 10.3758/s13414-017-1330-9
  6. Bombeke, K., Langford, Z. D., Notebaert, W., & Boehler, C. N. (2017). The role of temporal predictability for early attentional adjustments after conflict. PloS one, 12(4), e0175694. DOI: 10.1371/journal.pone.0175694
  7. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624652. DOI: 10.1037/0033-295X.108.3.624
  8. Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5, 1134. DOI: 10.3389/fpsyg.2014.01134
  9. Braem, S., Bugg, J. M., Schmidt, J. R., Crump, M. J., Weissman, D. H., Notebaert, W., & Egner, T. (2019). Measuring adaptive control in conflict tasks. Trends in Cognitive Sciences, 23(9), 769783. DOI: 10.1016/j.tics.2019.07.002
  10. Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307(5712), 11181121. DOI: 10.1126/science.1105783
  11. Burle, B., Possamaï, C. A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: an electromyographic and distributional analysis. Psychological Research, 66(4), 324336. DOI: 10.1007/s00426-002-0105-6
  12. Cisek, P. (2007). Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 15851599. DOI: 10.1098/rstb.2007.2054
  13. Compton, R. J., Huber, E., Levinson, A. R., & Zheutlin, A. (2012). Is “conflict adaptation” driven by conflict? Behavioral and EEG evidence for the underappreciated role of congruent trials. Psychophysiology, 49(5), 583589. DOI: 10.1111/j.1469-8986.2012.01354.x
  14. Coull, J. T. (2004). fMRI studies of temporal attention: Allocating attention within, or towards, time. Cognitive Brain Research, 21(2), 216226. DOI: 10.1016/j.cogbrainres.2004.02.011
  15. Davelaar, E. J., & Stevens, J. (2009). Sequential dependencies in the Eriksen flanker task: A direct comparison of two competing accounts. Psychonomic Bulletin & Review, 16(1), 121126. DOI: 10.3758/PBR.16.1.121
  16. De Houwer, J. (2003). On the role of stimulus-response and stimulus-stimulus compatibility in the Stroop effect. Memory & Cognition, 31(3), 353359. DOI: 10.3758/BF03194393
  17. de Leeuw, J. R. (2015). Jspsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 112. DOI: 10.3758/s13428-014-0458-y
  18. Dignath, D., Berger, A., Spruit, I. M., & van Steenbergen, H. (2019). Temporal dynamics of error-related corrugator supercilii and zygomaticus major activity: Evidence for implicit emotion regulation following errors. International Journal of Psychophysiology, 146, 208216. DOI: 10.1016/j.ijpsycho.2019.10.003
  19. Dignath, D., Eder, A. B., Steinhauser, M., & Kiesel, A. (2020). Conflict monitoring and the affective-signaling hypothesis—An integrative review. Psychonomic Bulletin & Review, 124. DOI: 10.3758/s13423-019-01668-9
  20. Dignath, D., Johannsen, L., Hommel, B., & Kiesel, A. (2019) Contextual control of conflict: Reconciling cognitive-control and episodic retrieval accounts of sequential conflict modulation. Journal of Experimental Psychology: Human Perception and Performance, 45(9), 12651270. DOI: 10.1037/xhp0000673
  21. Dignath, D., Pfister, R., Eder, A. B., Kiesel, A., & Kunde, W. (2014). Representing the hyphen in action–effect associations: Automatic acquisition and bidirectional retrieval of action–effect intervals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 17011712. DOI: 10.1037/xlm0000022
  22. Dreisbach, G., Goschke, T., & Haider, H. (2006). Implicit task sets in task switching? Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(6), 12211233. DOI: 10.1037/0278-7393.32.6.1221
  23. Eisenberg, I. W., Bissett, P. G., Enkavi, A. Z., Li, J., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Uncovering the structure of self-regulation through data-driven ontology discovery. Nature Communications, 10(1), 113. DOI: 10.1038/s41467-019-10301-1
  24. Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 380390. DOI: 10.3758/CABN.7.4.380
  25. Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in cognitive sciences, 12(10), 374380. DOI: 10.1016/j.tics.2008.07.001
  26. Egner, T. (2014). Creatures of habit (and control): a multi-level learning perspective on the modulation of congruency effects. Frontiers in Psychology, 5, 1247. DOI: 10.3389/fpsyg.2014.01247
  27. Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 17841790. DOI: 10.1038/nn1594
  28. Eimer, M. (1995). Stimulus-response compatibility and automatic response activation: Evidence from psychophysiological studies. Journal of Experimental Psychology: Human Perception and Performance, 21(4), 837854. DOI: 10.1037/0096-1523.21.4.837
  29. Eimer, M. (1997). Uninformative symbolic cues may bias visual-spatial attention: Behavioral and electrophysiological evidence. Biological Psychology, 46(1), 6771. DOI: 10.1016/S0301-0511(97)05254-X
  30. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. DOI: 10.3758/BF03193146
  31. Feng, S. F., Schwemmer, M., Gershman, S. J., & Cohen, J. D. (2014). Multitasking versus multiplexing: Toward a normative account of limitations in the simultaneous execution of control-demanding behaviors. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 129146. DOI: 10.3758/s13415-013-0236-9
  32. Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., & Philipp, A. (2020). Binding and retrieval in action control (BRAC). Trends in Cognitive Science, 24(5), 375387. DOI: 10.1016/j.tics.2020.02.004
  33. Giesen, C., & Rothermund, K. (2014). Distractor repetitions retrieve previous responses and previous targets: Experimental dissociations of distractor–response and distractor–target bindings. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 645659. DOI: 10.1037/a0035278
  34. Grant, L. D., Cookson, S. L., & Weissman, D. H. (2020). Task sets serve as boundaries for the congruency sequence effect. Journal of Experimental Psychology: Human Perception and Performance, 46(8), 798812. DOI: 10.1037/xhp0000750
  35. Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480506. DOI: 10.1037/0096-3445.121.4.480
  36. Grosjean, M., Rosenbaum, D. A., & Elsinger, C. (2001). Timing and reaction time. Journal of Experimental Psychology: General, 130, 256272. DOI: 10.1037/0096-3445.130.2.256
  37. Hazeltine, E., Akçay, Ç., & Mordkoff, J. T. (2011). Keeping Simon simple: Examining the relationship between sequential modulations and feature repetitions with two stimuli, two locations and two responses. Acta Psychologica, 136(2), 245252. DOI: 10.1016/j.actpsy.2010.07.011
  38. Hazeltine, E., Lightman, E., Schwarb, H., & Schumacher, E. H. (2011). The boundaries of sequential modulations: Evidence for set-level control. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 18981914. DOI: 10.1037/a0024662
  39. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512526. DOI: 10.1007/s00426-009-0234-2
  40. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12(5), 360365. DOI: 10.1111/1467-9280.00367
  41. Hommel, B., Proctor, R. W., & Vu, K. P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological research, 68(1), 117. DOI: 10.1007/s00426-003-0132-y
  42. Jiang, J., Brashier, N. M., & Egner, T. (2015). Memory meets control in hippocampal and striatal binding of stimuli, responses, and attentional control states. Journal of Neuroscience, 35(44), 1488514895. DOI: 10.1523/JNEUROSCI.2957-15.2015
  43. Jost, K., Wendt, M., Luna-Rodriguez, A., Löw, A., & Jacobsen, T. (2017). Strategic control over extent and timing of distractor-based response activation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(2), 326. DOI: 10.1037/xlm0000326
  44. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior Cingulate Conflict Monitoring and Adjustments in Control. Science, 303(5660), 10231026. DOI: 10.1126/science.1089910
  45. Kiesel, A., Kunde, W., & Hoffmann, J. (2006). Evidence for task-specific resolution of response conflict. Psychonomic Bulletin & Review, 13(5), 800806. DOI: 10.3758/BF03194000
  46. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849874. DOI: 10.1037/a0019842
  47. Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking—An integrative review of dual-task and task-switching research. Psychological Bulletin, 144(6), 557583. DOI: 10.1037/bul0000144
  48. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility–a model and taxonomy. Psychological Review, 97(2), 253270. DOI: 10.1037/0033-295X.97.2.253
  49. Kunde, W. (2003). Sequential modulations of stimulus-response correspondence effects depend on awareness of response conflict. Psychonomic Bulletin & Review, 10(1), 198205. DOI: 10.3758/BF03196485
  50. Kunde, W., Kiesel, A., & Hoffmann, J. (2003). Conscious control over the content of unconscious cognition. Cognition, 88, 223242. DOI: 10.1016/S0010-0277(03)00023-4
  51. Kunde, W., & Wühr, P. (2006). Sequential modulations of correspondence effects across spatial dimensions and tasks. Memory & Cognition, 34(2), 356367. DOI: 10.3758/BF03193413
  52. Künzell, S., Broeker, L., Dignath, D., Ewolds, H., Raab, M., & Thomaschke, R. (2018). What is a task? An ideomotor perspective. Psychological research, 82(1), 411. DOI: 10.1007/s00426-017-0942-y
  53. Lamers, M. J., & Roelofs, A. (2011). Attentional control adjustments in Eriksen and Stroop task performance can be independent of response conflict. Quarterly Journal of Experimental Psychology, 64(6), 10561081. DOI: 10.1080/17470218.2010.523792
  54. Larson, M. J., Clayson, P. E., Kirwan, C. B., & Weissman, D. H. (2016). Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds. Psychophysiology, 53(6), 814822. DOI: 10.1111/psyp.12625
  55. Lim, C. E., & Cho, Y. S. (2018). Determining the scope of control underlying the congruency sequence effect: roles of stimulus-response mapping and response mode. Acta Psychologica, 190, 267276. DOI: 10.1016/j.actpsy.2018.08.012
  56. Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22(3), 10971106. DOI: 10.1016/j.neuroimage.2004.02.033
  57. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450452. DOI: 10.1038/nn1051
  58. Miller, E. K., & Cohen, J. D. (2001). An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 24(1), 167202. DOI: 10.1146/annurev.neuro.24.1.167
  59. Moeller, B., & Frings, C. (2019). Lost time: Bindings do not represent temporal order information. Psychonomic Bulletin & Review, 26(1), 325331. DOI: 10.3758/s13423-018-1493-y
  60. Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 435448. DOI: 10.1037/0096-1523.13.3.435
  61. Nett, N., Bröder, A., & Frings, C. (2016). Distractor-based stimulus-response bindings retrieve decisions independent of motor programs. Acta Psychologica, 171, 5764. DOI: 10.1016/j.actpsy.2016.09.006
  62. Nigbur, R., Schneider, J., Sommer, W., Dimigen, O., & Stürmer, B. (2015). Ad-hoc and context-dependent adjustments of selective attention in conflict control: An ERP study with visual probes. NeuroImage, 107, 7684. DOI: 10.1016/j.neuroimage.2014.11.052
  63. Nobre, A. C., & Van Ede, F. (2018). Anticipated moments: temporal structure in attention. Nature Reviews Neuroscience, 19(1), 3448. DOI: 10.1038/nrn.2017.141
  64. Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 2227. DOI: 10.1016/j.jbef.2017.12.004
  65. Pastötter, B., Dreisbach, G., & Bäuml, K. H. T. (2013). Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect. Journal of Cognitive Neuroscience, 25(12), 21672178. DOI: 10.1162/jocn_a_00474
  66. Praamstra, P., Kleine, B. U., & Schnitzler, A. (1999). Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. NeuroReport, 10(17), 36713674. DOI: 10.1097/00001756-199911260-00038
  67. Pohl, C., Kiesel, A., Kunde, W., & Hoffmann, J. (2010). Early and late selection in unconscious information processing. Journal of Experimental Psychology: Human Perception and Performance, 36, 268285. DOI: 10.1037/a0015793
  68. Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith, E. E. (2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28(51), 1378613792. DOI: 10.1523/JNEUROSCI.1026-08.2008
  69. Purmann, S., & Pollmann, S. (2015). Adaptation to recent conflict in the classical color-word Stroop-task mainly involves facilitation of processing of task-relevant information. Frontiers in Human Neuroscience, 9, 88. DOI: 10.3389/fnhum.2015.00088
  70. Reuss, H., Desender, K., Kiesel, A., & Kunde, W. (2014). Unconscious conflicts in unconscious contexts: The role of awareness and timing in flexible conflict adaptation. Journal of Experimental Psychology: General, 143(4), 17011718. DOI: 10.1037/a0036437
  71. Ridderinkhof, R. K. (2002). Micro-and macro-adjustments of task set: Activation and suppression in conflict tasks. Psychological Research, 66(4), 312323. DOI: 10.1007/s00426-002-0104-7
  72. Scherbaum, S., Fischer, R., Dshemuchadse, M., & Goschke, T. (2011). The dynamics of cognitive control: Evidence for within-trial conflict adaptation from frequency-tagged EEG. Psychophysiology, 48(5), 591600. DOI: 10.1111/j.1469-8986.2010.01137.x
  73. Schmidt, J. R. (2013). Temporal learning and list-level proportion congruency: Conflict adaptation or learning when to respond? PLoS One, 8(11), e82320. DOI: 10.1371/journal.pone.0082320
  74. Schmidt, J. R., De Houwer, J., & Rothermund, K. (2016). The Parallel Episodic Processing (PEP) model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs. Cognitive Psychology, 91, 82108. DOI: 10.1016/j.cogpsych.2016.10.004
  75. Schmidt, J. R., & Weissman, D. H. (2014). Congruency sequence effects without feature integration or contingency learning confounds. PLoS One, 9(7). DOI: 10.1371/journal.pone.0102337
  76. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User’s guide. Psychology Software Incorporated.
  77. Schröder, P. A., Dignath, D., & Janczyk, M. (2019). Individual differences in uncertainty tolerance are not associated with cognitive control functions in the flanker task. Experimental Psychology, 65(4), 245256. DOI: 10.1027/1618-3169/a000408
  78. Schuch, S., Dignath, D., Steinhauser, M., & Janczyk, M. (2019). Monitoring and control in multitasking. Psychonomic Bulletin & Review, 26(1), 222240. DOI: 10.3758/s13423-018-1512-z
  79. Schumacher, E. H., & Hazeltine, E. (2016). Hierarchical task representation: Task files and response selection. Current Directions in Psychological Science, 25(6), 449454. DOI: 10.1177/0963721416665085
  80. Singh, T., Frings, C., & Moeller, B. (2019). Binding abstract concepts. Psychological Research, 83, 878884. DOI: 10.1007/s00426-017-0897-z
  81. Stahl, C., Voss, A., Schmitz, F., Nuszbaum, M., Tüscher, O., Lieb, K., & Klauer, K. C. (2014). Behavioral components of impulsivity. Journal of Experimental Psychology: General, 143(2), 850886. DOI: 10.1037/a0033981
  82. Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28(6), 1345. DOI: 10.1037/0096-1523.28.6.1345
  83. Stürmer, B., Redlich, M., Irlbacher, K., & Brandt, S. (2007). Executive control over response priming and conflict: a transcranial magnetic stimulation study. Experimental Brain Research. DOI: 10.1007/s00221-007-1053-6
  84. van Veen, V. (2006). A neuroimaging approach to the relationship between attention and speed–accuracy tradeoff. Unpublished doctoral thesis, University of Pittsburgh, Pittsburgh, PA.
  85. Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13(6), 252257. DOI: 10.1016/j.tics.2009.02.007
  86. Verleger, R., Vollmer, C., Wauschkuhn, B., van der Lubbe, R. H. J., & Wascher, E. (2000). Dimensional overlap bAetween arrows as cueing stimuli and responses?: Evidence from contra-ipsilateral differences in EEG potentials. Cognitive Brain Research, 10(1–2), 99109. DOI: 10.1016/S0926-6410(00)00032-X
  87. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming. Proceedings of the National Academy of Sciences, 100(10), 62756280. DOI: 10.1073/pnas.0931489100
  88. Weissman, D. H. (2019). Let your fingers do the walking: Finger force distinguishes competing accounts of the congruency sequence effect. Psychonomic Bulletin & Review, 26(5), 16191626. DOI: 10.3758/s13423-019-01626-5
  89. Weissman, D. H., Egner, T., Hawks, Z., & Link, J. (2015). The congruency sequence effect emerges when the distracter precedes the target. Acta Psychologica, 156, 821. DOI: 10.1016/j.actpsy.2015.01.003
  90. Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 20222037. DOI: 10.1037/a0037454
  91. Wendt, M., Kiesel, A., Geringswald, F., Purmann, S., & Fischer, R. (2014). Attentional adjustment to conflict strength. Experimental Psychology, 61, 5567. DOI: 10.1027/1618-3169/a000227
  92. Wendt, M., Luna-Rodriguez, A., & Jacobsen, T. (2014). Utility-based early modulation of processing distracting stimulus information. Journal of Neuroscience, 34(50), 1672016725. DOI: 10.1523/JNEUROSCI.0754-14.2014
DOI: https://doi.org/10.5334/joc.143 | Journal eISSN: 2514-4820
Language: English
Submitted on: Mar 27, 2020
|
Accepted on: Dec 2, 2020
|
Published on: Mar 10, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 David Dignath, Andrea Kiesel, Moritz Schiltenwolf, Eliot Hazeltine, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.