References
- 1Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7–7. DOI: 10.1167/9.10.7
- 2Beeck, H. O., & Vogels, R. (2000). Spatial sensitivity of macaque inferior temporal neurons. The Journal of Comparative Neurology, 426(4), 505–518. DOI: 10.1002/1096-9861(20001030)426:4<;505::AID-CNE1>3.0.CO;2-M
- 3Carrigan, A. J., Wardle, S. G., & Rich, A. N. (2019). Do target detection and target localization always go together? Extracting information from briefly presented displays. Attention, Perception, & Psychophysics, 1–15. DOI: 10.3758/s13414-019-01782-9
- 4Cheesman, J., & Merikle, P. M. (1984). Priming with and without awareness. Perception & Psychophysics, 36(4), 387–395. DOI: 10.3758/BF03202793
- 5Chen, H., & Wyble, B. (2015). The location but not the attributes of visual cues are automatically encoded into working memory. Vision research, 107, 76–85. DOI: 10.1016/j.visres.2014.11.010
- 6Dicarlo, J. J., & Maunsell, J. H. (2003). Anterior Inferotemporal Neurons of Monkeys Engaged in Object Recognition Can be Highly Sensitive to Object Retinal Position. Journal of Neurophysiology, 89(6), 3264–3278. DOI: 10.1152/jn.00358.2002
- 7Eriksen, C. W., & Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Perception & psychophysics, 12(2), 201–204. DOI: 10.3758/BF03212870
- 8Evans, K. K., & Treisman, A. (2005). Perception of objects in natural scenes: is it really attention free? Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1476. DOI: 10.1037/0096-1523.31.6.1476
- 9Guérard, K., Morey, C. C., Lagacé, S., & Tremblay, S. (2013). Asymmetric binding in serial memory for verbal and spatial information. Memory & cognition, 41(3), 378–391. DOI: 10.3758/s13421-012-0275-4
- 10Guérard, K., Tremblay, S., & Saint-Aubin, J. (2009). Short Article: Similarity and Binding in Memory: Bound to be Detrimental. Quarterly Journal of Experimental Psychology, 62(1), 26–32. DOI: 10.1080/17470210802215277
- 11Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object identity from macaque inferior temporal cortex. Science, 310(5749), 863–866. DOI: 10.1126/science.1117593
- 12JASP Team. (2019). JASP (Version 0.11.1) [Computer software]. Retrieved from
https://jaspstats.org/ - 13Jeffreys, H. (1961). Theory of probability, Clarendon.
- 14Johnston, J. C., & Pashler, H. (1990). Close binding of identity and location in visual feature perception. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 843–856. DOI: 10.1037/0096-1523.16.4.843
- 15Kaye, D. B., Brown, S. W., Post, T. A., & Plude, D. J. (1981). The development of letter processing efficiency. Memory & cognition, 9(4), 378–388. DOI: 10.3758/BF03197563
- 16Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1.
- 17Lamme, V. A. (2003). Why visual attention and awareness are different. Trends in cognitive sciences, 7(1), 12–18. DOI: 10.1016/S1364-6613(02)00013-X
- 18Lamme, V. A. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11), 494–501. DOI: 10.1016/j.tics.2006.09.001
- 19Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579. DOI: 10.1016/S0166-2236(00)01657-X
- 20Li, F. F., Vanrullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99(14), 9596–9601. DOI: 10.1073/pnas.092277599
- 21Morey, C. C. (2009). Integrated cross-domain object storage in working memory: Evidence from a verbal–spatial memory task. The Quarterly Journal of Experimental Psychology, 62(11), 2235–2251. DOI: 10.1080/17470210902763382
- 22Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe. Nature neuroscience, 3(1), 85–90. DOI: 10.1038/71156
- 23Pratte, M. (2018). Swap Errors in Spatial Working Memory are Informed Guesses, Not Binding Errors. Journal of Vision, 18(10), 886. DOI: 10.1167/18.10.886
- 24Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 65–97. DOI: 10.1016/0010-0277(89)90014-0
- 25Roelfsema, P. R., & Lange, F. P. (2016). Early Visual Cortex as a Multiscale Cognitive Blackboard. Annual Review of Vision Science, 2(1), 131–151. DOI: 10.1146/annurev-vision-111815-114443
- 26Sayres, R., & Grill-Spector, K. (2008). Relating retinotopic and object-selective responses in human lateral occipital cortex. Journal of Neurophysiology, 100(1), 249–267. DOI: 10.1152/jn.01383.2007
- 27Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2018). Psychological Scaling Reveals a Single Parameter Framework For Visual Working Memory.
- 28Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. DOI: 10.1016/0010-0285(80)90005-5
- 29Tsotsos, J. K. (2002). The Selective Tuning Model for Visual Attention. Visual Attention Mechanisms, 239–249. DOI: 10.1007/978-1-4615-0111-4_22
- 30Vanrullen, R. (2009). Binding hardwired versus on-demand feature conjunctions. Visual Cognition, 17(1–2), 103–119. DOI: 10.1080/13506280802196451
- 31Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. DOI: 10.1038/nature06860
