References
- 1Labrecque N, Cermakian N. Circadian Clocks in the Immune System. J Biol Rhythms. 2015; 30(4): 277–90. DOI: 10.1177/0748730415577723
- 2Antle MC, Silver R. Circadian Insights into Motivated Behavior. Curr Top Behav Neurosci. 2016; 27: 137–69. DOI: 10.1007/7854_2015_384
- 3Hsieh PN, Zhang L, Jain MK. Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart. Cell Mol Life Sci. 2018; 75(3): 403–416. DOI: 10.1007/s00018-017-2606-x
- 4Rosenwasser AM, Turek FW. Neurobiology of Circadian Rhythm Regulation. Sleep Med Clin. 2015; 10(4): 403–12. DOI: 10.1016/j.jsmc.2015.08.003
- 5Barbato E, et al. Dysregulation of Circadian Rhythm Gene Expression in Cystic Fibrosis Mice. J Circadian Rhythms. 2019; 17: 2. DOI: 10.5334/jcr.175
- 6King DP, Takahashi, JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci. 2000; 23: 713–42. DOI: 10.1146/annurev.neuro.23.1.713
- 7Reddy S, Reddy V, Sharma S. Physiology, Circadian Rhythm, in StatPearls. 2020; Treasure Island (FL).
- 8Rijo-Ferreira, F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med. 2019; 11(1): 82. DOI: 10.1186/s13073-019-0704-0
- 9Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl). 2019; 23(3): 147–156. DOI: 10.1007/s11818-019-00215-x
- 10Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018; 175(16): 3190–3199. DOI: 10.1111/bph.14116
- 11Claustrat B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgie. 2015; 61(2–3): 77–84. DOI: 10.1016/j.neuchi.2015.03.002
- 12Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol. 2018; 258: 215–221. DOI: 10.1016/j.ygcen.2017.05.013
- 13Freedman MS, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999; 284(5413): 502–4. DOI: 10.1126/science.284.5413.502
- 14Liu J, et al. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol. 2016; 56: 361–83. DOI: 10.1146/annurev-pharmtox-010814-124742
- 15Liu C, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997; 19(1): 91–102. DOI: 10.1016/S0896-6273(00)80350-5
- 16Jarzynka MJ, et al. Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. J Pineal Res. 2009; 46(2): 161–71. DOI: 10.1111/j.1600-079X.2008.00644.x
- 17Witt-Enderby PA, et al. Knock-down of RGS4 and beta tubulin in CHO cells expressing the human MT1 melatonin receptor prevents melatonin-induced receptor desensitization. Life Sci. 2004; 75(22): 2703–15. DOI: 10.1016/j.lfs.2004.08.002
- 18Jarzynka MJ, et al. Modulation of melatonin receptors and G-protein function by microtubules. J Pineal Res. 2006; 41(4): 324–36. DOI: 10.1111/j.1600-079X.2006.00371.x
- 19Schofield A, Bernard, O. Tubulin polymerization promoting protein 1 (TPPP1): A DNA-damage induced microtubule regulatory gene. Commun Integr Biol. 2013; 6(6):
e26316 . DOI: 10.4161/cib.26316 - 20Olah J, Ovadi J. Pharmacological targeting of alpha-synuclein and TPPP/p25 in Parkinson’s disease: challenges and opportunities in a Nutshell. FEBS Lett. 2019; 593(13): 1641–1653. DOI: 10.1002/1873-3468.13464
- 21Olah J, Bertrand P, Ovadi J. Role of the microtubule-associated TPPP/p25 in Parkinson’s and related diseases and its therapeutic potential. Expert Rev Proteomics. 2017; 14(4): 301–309. DOI: 10.1080/14789450.2017.1304216
- 22Olah J, et al. Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem. 2011; 286(39): 34088–100. DOI: 10.1074/jbc.M111.243907
- 23Rymut SM, et al. Role of Exchange Protein Activated by cAMP 1 in Regulating Rates of Microtubule Formation in Cystic Fibrosis Epithelial Cells. Am J Respir Cell Mol Biol. 2015; 53(6): 853–62. DOI: 10.1165/rcmb.2014-0462OC
- 24Rymut SM, et al. Reduced microtubule acetylation in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2013; 305(6): L419–31. DOI: 10.1152/ajplung.00411.2012
- 25Rymut SM, et al. Improved Growth Patterns in Cystic Fibrosis Mice after Loss of Histone Deacetylase 6. Sci Rep. 2017; 7(1): 3676. DOI: 10.1038/s41598-017-03931-2
- 26Corey DA, Rymut SM, Kelley TJ. Alleviation of depression-like behavior in a cystic fibrosis mouse model by Hdac6 depletion. Sci Rep. 2020; 10(1): 16278. DOI: 10.1038/s41598-020-73298-4
- 27Cipriani G, et al. Sleep disturbances and dementia. Psychogeriatrics. 2015; 15(1): 65–74. DOI: 10.1111/psyg.12069
- 28Hennawy M, et al. Sleep and Attention in Alzheimer’s Disease. Yale J Biol Med. 2019; 92(1): 53–61.
- 29Albers JA, Chand P, Anch AM. Multifactorial sleep disturbance in Parkinson’s disease. Sleep Med. 2017; 35: 41–48. DOI: 10.1016/j.sleep.2017.03.026
- 30Videnovic A. Disturbances of Sleep and Alertness in Parkinson’s Disease. Curr Neurol Neurosci Rep. 2018; 18(6): 29. DOI: 10.1007/s11910-018-0838-2
- 31Lumertz MS, Pinto LA. Sleep-disordered breathing in cystic fibrosis pediatric subjects. Sleep Sci. 2019; 12(3): 165–170. DOI: 10.5935/1984-0063.20190079
- 32Shakkottai A, et al. Sleep disturbances and their impact in pediatric cystic fibrosis. Sleep Med Rev. 2018; 42: 100–110. DOI: 10.1016/j.smrv.2018.07.002
- 33Kennaway DJ, et al. Melatonin in mice: rhythms, response to light, adrenergic stimulation, and metabolism. Am J Physiol Regul Integr Comp Physiol. 2002; 282(2): R358–65. DOI: 10.1152/ajpregu.00360.2001
- 34Preitner N, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002; 110(2): 251–60. DOI: 10.1016/S0092-8674(02)00825-5
- 35Altintas A, et al. Transcriptomic and epigenomics atlas of myotubes reveals insight into the circadian control of metabolism and development. Epigenomics. 2020; 12(8): 701–713. DOI: 10.2217/epi-2019-0391
- 36Dyar KA, et al. Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell. 2018; 174(6): 1571–1585 e11. DOI: 10.1016/j.cell.2018.08.042
- 37Beker MC, et al. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep. 2019; 9(1): 19082. DOI: 10.1038/s41598-019-55663-0
- 38Haque SN, Booreddy SR, Welsh DK. Effects of BMAL1 Manipulation on the Brain’s Master Circadian Clock and Behavior. Yale J Biol Med. 2019; 92(2): 251–258.
- 39Boban S, et al. Sleep disturbances in Rett syndrome: Impact and management including use of sleep hygiene practices. Am J Med Genet A. 2018; 176(7): 1569–1577. DOI: 10.1002/ajmg.a.38829
- 40Boban S, et al. Determinants of sleep disturbances in Rett syndrome: Novel findings in relation to genotype. Am J Med Genet A. 2016; 170(9): 2292–300. DOI: 10.1002/ajmg.a.37784
- 41Abdul Hamid O, Burakgazi A. Respiratory System, Sleep Quality, Restless Leg Syndrome, and Depression-Anxiety Assessment in Charcot Marie Tooth Disease. J Clin Neuromuscul Dis. 2019; 21(1): 58–59. DOI: 10.1097/CND.0000000000000253
- 42Profitt MF, et al. Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Schizophr Bull. 2016; 42(5): 1207–15. DOI: 10.1093/schbul/sbw017
- 43Deurveilher S, et al. Altered Circadian Activity and Sleep/Wake Rhythms in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Sleep. 2020. DOI: 10.1093/sleep/zsaa237
