Have a personal or library account? Click to login
Tubulin Polymerization Promoting Protein Affects the Circadian Timing System in C57Bl/6 Mice Cover

Tubulin Polymerization Promoting Protein Affects the Circadian Timing System in C57Bl/6 Mice

Open Access
|May 2021

References

  1. 1Labrecque N, Cermakian N. Circadian Clocks in the Immune System. J Biol Rhythms. 2015; 30(4): 27790. DOI: 10.1177/0748730415577723
  2. 2Antle MC, Silver R. Circadian Insights into Motivated Behavior. Curr Top Behav Neurosci. 2016; 27: 13769. DOI: 10.1007/7854_2015_384
  3. 3Hsieh PN, Zhang L, Jain MK. Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart. Cell Mol Life Sci. 2018; 75(3): 403416. DOI: 10.1007/s00018-017-2606-x
  4. 4Rosenwasser AM, Turek FW. Neurobiology of Circadian Rhythm Regulation. Sleep Med Clin. 2015; 10(4): 40312. DOI: 10.1016/j.jsmc.2015.08.003
  5. 5Barbato E, et al. Dysregulation of Circadian Rhythm Gene Expression in Cystic Fibrosis Mice. J Circadian Rhythms. 2019; 17: 2. DOI: 10.5334/jcr.175
  6. 6King DP, Takahashi, JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci. 2000; 23: 71342. DOI: 10.1146/annurev.neuro.23.1.713
  7. 7Reddy S, Reddy V, Sharma S. Physiology, Circadian Rhythm, in StatPearls. 2020; Treasure Island (FL).
  8. 8Rijo-Ferreira, F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med. 2019; 11(1): 82. DOI: 10.1186/s13073-019-0704-0
  9. 9Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl). 2019; 23(3): 147156. DOI: 10.1007/s11818-019-00215-x
  10. 10Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018; 175(16): 31903199. DOI: 10.1111/bph.14116
  11. 11Claustrat B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgie. 2015; 61(2–3): 7784. DOI: 10.1016/j.neuchi.2015.03.002
  12. 12Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol. 2018; 258: 215221. DOI: 10.1016/j.ygcen.2017.05.013
  13. 13Freedman MS, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999; 284(5413): 5024. DOI: 10.1126/science.284.5413.502
  14. 14Liu J, et al. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol. 2016; 56: 36183. DOI: 10.1146/annurev-pharmtox-010814-124742
  15. 15Liu C, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997; 19(1): 91102. DOI: 10.1016/S0896-6273(00)80350-5
  16. 16Jarzynka MJ, et al. Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. J Pineal Res. 2009; 46(2): 16171. DOI: 10.1111/j.1600-079X.2008.00644.x
  17. 17Witt-Enderby PA, et al. Knock-down of RGS4 and beta tubulin in CHO cells expressing the human MT1 melatonin receptor prevents melatonin-induced receptor desensitization. Life Sci. 2004; 75(22): 270315. DOI: 10.1016/j.lfs.2004.08.002
  18. 18Jarzynka MJ, et al. Modulation of melatonin receptors and G-protein function by microtubules. J Pineal Res. 2006; 41(4): 32436. DOI: 10.1111/j.1600-079X.2006.00371.x
  19. 19Schofield A, Bernard, O. Tubulin polymerization promoting protein 1 (TPPP1): A DNA-damage induced microtubule regulatory gene. Commun Integr Biol. 2013; 6(6): e26316. DOI: 10.4161/cib.26316
  20. 20Olah J, Ovadi J. Pharmacological targeting of alpha-synuclein and TPPP/p25 in Parkinson’s disease: challenges and opportunities in a Nutshell. FEBS Lett. 2019; 593(13): 16411653. DOI: 10.1002/1873-3468.13464
  21. 21Olah J, Bertrand P, Ovadi J. Role of the microtubule-associated TPPP/p25 in Parkinson’s and related diseases and its therapeutic potential. Expert Rev Proteomics. 2017; 14(4): 301309. DOI: 10.1080/14789450.2017.1304216
  22. 22Olah J, et al. Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem. 2011; 286(39): 34088100. DOI: 10.1074/jbc.M111.243907
  23. 23Rymut SM, et al. Role of Exchange Protein Activated by cAMP 1 in Regulating Rates of Microtubule Formation in Cystic Fibrosis Epithelial Cells. Am J Respir Cell Mol Biol. 2015; 53(6): 85362. DOI: 10.1165/rcmb.2014-0462OC
  24. 24Rymut SM, et al. Reduced microtubule acetylation in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2013; 305(6): L41931. DOI: 10.1152/ajplung.00411.2012
  25. 25Rymut SM, et al. Improved Growth Patterns in Cystic Fibrosis Mice after Loss of Histone Deacetylase 6. Sci Rep. 2017; 7(1): 3676. DOI: 10.1038/s41598-017-03931-2
  26. 26Corey DA, Rymut SM, Kelley TJ. Alleviation of depression-like behavior in a cystic fibrosis mouse model by Hdac6 depletion. Sci Rep. 2020; 10(1): 16278. DOI: 10.1038/s41598-020-73298-4
  27. 27Cipriani G, et al. Sleep disturbances and dementia. Psychogeriatrics. 2015; 15(1): 6574. DOI: 10.1111/psyg.12069
  28. 28Hennawy M, et al. Sleep and Attention in Alzheimer’s Disease. Yale J Biol Med. 2019; 92(1): 5361.
  29. 29Albers JA, Chand P, Anch AM. Multifactorial sleep disturbance in Parkinson’s disease. Sleep Med. 2017; 35: 4148. DOI: 10.1016/j.sleep.2017.03.026
  30. 30Videnovic A. Disturbances of Sleep and Alertness in Parkinson’s Disease. Curr Neurol Neurosci Rep. 2018; 18(6): 29. DOI: 10.1007/s11910-018-0838-2
  31. 31Lumertz MS, Pinto LA. Sleep-disordered breathing in cystic fibrosis pediatric subjects. Sleep Sci. 2019; 12(3): 165170. DOI: 10.5935/1984-0063.20190079
  32. 32Shakkottai A, et al. Sleep disturbances and their impact in pediatric cystic fibrosis. Sleep Med Rev. 2018; 42: 100110. DOI: 10.1016/j.smrv.2018.07.002
  33. 33Kennaway DJ, et al. Melatonin in mice: rhythms, response to light, adrenergic stimulation, and metabolism. Am J Physiol Regul Integr Comp Physiol. 2002; 282(2): R35865. DOI: 10.1152/ajpregu.00360.2001
  34. 34Preitner N, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002; 110(2): 25160. DOI: 10.1016/S0092-8674(02)00825-5
  35. 35Altintas A, et al. Transcriptomic and epigenomics atlas of myotubes reveals insight into the circadian control of metabolism and development. Epigenomics. 2020; 12(8): 701713. DOI: 10.2217/epi-2019-0391
  36. 36Dyar KA, et al. Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell. 2018; 174(6): 15711585 e11. DOI: 10.1016/j.cell.2018.08.042
  37. 37Beker MC, et al. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep. 2019; 9(1): 19082. DOI: 10.1038/s41598-019-55663-0
  38. 38Haque SN, Booreddy SR, Welsh DK. Effects of BMAL1 Manipulation on the Brain’s Master Circadian Clock and Behavior. Yale J Biol Med. 2019; 92(2): 251258.
  39. 39Boban S, et al. Sleep disturbances in Rett syndrome: Impact and management including use of sleep hygiene practices. Am J Med Genet A. 2018; 176(7): 15691577. DOI: 10.1002/ajmg.a.38829
  40. 40Boban S, et al. Determinants of sleep disturbances in Rett syndrome: Novel findings in relation to genotype. Am J Med Genet A. 2016; 170(9): 2292300. DOI: 10.1002/ajmg.a.37784
  41. 41Abdul Hamid O, Burakgazi A. Respiratory System, Sleep Quality, Restless Leg Syndrome, and Depression-Anxiety Assessment in Charcot Marie Tooth Disease. J Clin Neuromuscul Dis. 2019; 21(1): 5859. DOI: 10.1097/CND.0000000000000253
  42. 42Profitt MF, et al. Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Schizophr Bull. 2016; 42(5): 120715. DOI: 10.1093/schbul/sbw017
  43. 43Deurveilher S, et al. Altered Circadian Activity and Sleep/Wake Rhythms in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Sleep. 2020. DOI: 10.1093/sleep/zsaa237
DOI: https://doi.org/10.5334/jcr.207 | Journal eISSN: 1740-3391
Language: English
Submitted on: Dec 11, 2020
Accepted on: May 1, 2021
Published on: May 20, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Eric Barbato, Rebecca Darrah, Thomas J. Kelley, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.