References
- 1Hower, IM, Harper, SA and Buford, TW. Circadian rhythms, exercise, and cardiovascular health. Circadian Rhythm. 2018; 16(1): 1–8. DOI: 10.5334/jcr.164
- 2Chen, LH and Yang, GR. Recent advances in circadian rhythms in cardiovascular system. Frontiers in Pharmacology. 2015; 6: 7. DOI: 10.3389/fphar.2015.00071
- 3Douma, LG and Gumz, ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med. 2018; 119: 108–114. DOI: 10.1016/j.freeradbiomed.2017.11.024
- 4Hood, S and Amir, SH. The aging clock:circadian rhythms and later life. J Clin Invest. 2017; 127(2): 437–446. DOI: 10.1172/JCI90328
- 5Dampney, RAL. Resetting of the baroreflex control of sympathetic vasomotor activity during natural behaviours: description and conceptual model of central mechanisms. Fornt. Neurosci. 2017; 11: 461. DOI: 10.3389/fnins.2017.00461
- 6Gregorski, MJ, Buxbaum, SG, Kapuku, G, Dong, Y, Zhu, H, Davis, M, et al. Interactive influences of ethnicity, endothelin-1 gene, and everyday discrimination upon nocturnal ambulatory blood pressure. Annals Behavioral Medicine. 2013; 45(3): 377–389. DOI: 10.1007/s12160-013-9472-z
- 7Speed, JS and Pollock, DM. Endothelin, Kidney Disease, and Hypertension. Hypertension. 2013; 61(6): 1142–1145. DOI: 10.1161/HYPERTENSIONAHA.113.00595
- 8Hu, M, Lu, YP, Hasan, AA and Hocher, B. Plasma ET-1 concentrations are elevated in patients with hypertension – meta-analysis of clinical studies. Kidney Blood Press Res. 2017; 42: 304–313. DOI: 10.1159/000477572
- 9Thosar, SS, Butler, MP and Shea, SA. Role of circadian system in cardiovascular disease. J Clin Invest. 2018; 128(6): 2157–2167. DOI: 10.1172/JCI80590
- 10Dhaun, N, Moorhouse, R, Macintyre, IM, Melville, V, Oosthuyzen, W, Kimmit, RA, et al. Diurnal Variation in Blood Pressure and Arterial Stiffness in Chronic Kidney Diseases: The role of Endothelin-1. Hypertension. 2014; 64(2): 296–304. DOI: 10.1161/HYPERTENSIONAHA.114.03533
- 11Xu, M, Lu, YP, Hasan, AA and Hocher, B. Plasma ET-1 Concentrations are Elevated in Patients with Hypertension-Meta Analysis of Clinical Studies. Kidney Blood Pressure Res. 2017; 42: 304–313. DOI: 10.1159/000477572
- 12Horinouchi, T, Terada, K, Higashi, T and Miwa, S. Endothelin receptor signaling: new insight into its regulatory mechanisms. J Pharmacol Sci. 2013; 123(2): 85–101. DOI: 10.1254/jphs.13R02CR
- 13Davenport, AP, Hyndman, KA, Dhaun, N, Southan, Ch, Kohan, DE, Pollock, JS, et al. Endothelin. Pharmacol Rev. 2016; 68(2): 357–418. DOI: 10.1124/pr.115.011833
- 14Felou, M and Vanhoutte, PM. Endothelium-derived hyperpolarizing factor: where are we know? J. Arterioscler. Thrombvasc. Biol. 2006; 26(6): 1215–1225. DOI: 10.1161/01.ATV.0000217611.81085.c5
- 15Wang, Y and Wang, DH. Prevention of endothelin-1-induced increases in blood pressure: role of endogenous CGRP. Am J Physiol Heart Circ Physiol. 2004; 287: H1868–H1874. DOI: 10.1152/ajpheart.00241.2004
- 16Mai, TH, Wu, J, Diedrich, A and Robertson, D. Calcitonin gene-related peptide (CGRP) in autonomic cardiovascular regulation and vascular structure. J. of the American Society of Hypertension. 2014; 8(5): 286–296. DOI: 10.1016/j.jash.2014.03.001
- 17Smillie, S and Brain, SD. Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neuropeptides. 2011; 45(2): 93–104. DOI: 10.1016/j.npep.2010.12.002
- 18Supowit, SC, Ramana, CV, Westlund, KN and Dipette, DJ. Calcitonin gene-related peptide Gene Expression in the Spontaneously Hypertensive Rat. J. Hypertension. 1993; 21(6): 1010–1014. DOI: 10.1161/01.HYP.21.6.1010
- 19Portaluppi, F, Transforini, G, Margutti, A, Vergnani, L, Ambrosio, MR, Rossi, R, et al. Circadian rhythm of calcitonin gene-related peptide in uncomplicated essential hypertension. J. Hypertension. 1992; 10: 1227–1234. DOI: 10.1097/00004872-199210000-00017
- 20Hashikawa-Hobara, N, Hashikawa, N, Zamami, Y, Takatori, S and Kawasaki, H. The mechanism of calcitonin gene-related peptide-containing nerve innervations. J. Pharmacol. Sci. 2012; 119: 117–121. DOI: 10.1254/jphs.12R02CP
- 21Deng, PY and Li, Y. Calcitonin gene-related peptide and Hypertension. Peptides. 2005; 26: 1676–1685. DOI: 10.1016/j.peptides.2005.02.002
- 22Russell, FA, King, R, Smillie, SJ, Kodji, X and Brain, SD. Calcitonin gene-related peptide: Physiology and Pathophysiology. Physiol. Rev. 2014; 94: 1099–1142. DOI: 10.1152/physrev.00034.2013
- 23Morisseau, C and Hammock, BD. Epoxide hydrolases: mechanisms, inhibitor designs and biological roles. Annu. Rev. Pharmacol. Toxicol. 2005; 45: 311–333. DOI: 10.1146/annurev.pharmtox.45.120403.095920
- 24Imig, J, Elmarakby, A, Nithipatikom, K, Wei, S, Capdevila, JH, Tuniki, VR, et al. Development of epoxyeicosatrienoic acid analogs with in vivo anti-hypertensive actions. Front Physiol. 2010; 1: 157. DOI: 10.3389/fphys.2010.00157
- 25Dimitropoulou, C, West, L, Field, MB, White, RE, Reddy, LM, Falck, JR and Imig, D. Protein phosphatase 2 A and Ca2+-activated K+-channels contribute to 11, 12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. Prostaglandins & Other Lipid Mediat. 2006; 83(1–2): 50–61. DOI: 10.1016/j.prostaglandins.2006.09.008
- 26Larsen, BT, Miura, H, Hatoum, OA, Camplell, WB, Hammock, BD, Zeldin, DC, et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK (Ca) channels: implications for soluble epoxide hydrolase inhibition. Am. J. Physiol. Heart Circ. Physiol. 2005; 290(2): H491–499. DOI: 10.1152/ajpheart.00927.2005
- 27Minuz, P, Jiang, H, Fava, C, Turolo, L, Tacconelli, S, Ricci, M, et al. Altered Release of Cytochrome P450 Metabolites of Arachidonic Acid in Renovascular Disease. J. Hypertension. 2008; 51(5): 1379–1385. DOI: 10.1161/HYPERTENSIONAHA.107.105395
- 28Yu, Z, Xu, F, Huse, LM, Morisseau, C, Draper, AJ, Newman, JW, et al. Soluble Epoxide Hydrolase Regulates Hydrolysis of vasoactive Epoxyeicosatrienoic Acids. Circ. Res. 2000; 87(11): 992–998. DOI: 10.1161/01.RES.87.11.992
- 29Pearce, WJ. In cerebrovascular circadian rhythms, EETs keep the beat. Focus on “Rhythmic expression to cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature”. Am. J. Physiol. Cell Physiol. 2014; 307(11): C986–988. DOI: 10.1152/ajpcell.00327.2014
- 30Carver, KA, Lourim, D, Tryba, AK and Harder, DR. Rhythmic expression of cytochrome P450 epoxygenases CYP4X1 and CYP2C11 in the rat brain and vasculature. Am. J. Phys. Cell Physiol. 2014; 37(11): C989–C998. DOI: 10.1152/ajpcell.00401.2013
- 31Transforini, G, Margutti, A, Vergnani, L, et al. Evidence that enhancement of cholinergic tone increases basal plasma level of calcitonin gene-related peptide in normal man. J. Clin. Endocrinol. Metab. 1994; 78(3): 763–766. DOI: 10.1210/jcem.78.3.8126154
- 32Supovit, SC, Rao, A, Bowers, MC, Zhao, H, Fink, G, Steficek, B, et al. Calcitonin Gene-related peptide protects against hypertension-induced Heart and Kidney Damage. Hypertension. 2005; 45: 109–114. DOI: 10.1161/01.HYP.0000151130.34874.fa
- 33Wang, Z, Martorell, BC, Wälchli, T, Vogel, O, Fisher, J, Bom, W and Vogel, J. Calcitonin gene-related peptide (CGRP) receptors are important to maintain cerebrovascular reactivity in chronic hypertension. PLOS one. 2015; 10(4):
e0123697 . DOI: 10.1371/journal.pone.0123697 - 34Xu, D, Wang, X, Wang, JP and Yuan, QX. Calcitonin gene-related peptide (CGRP) in Normotensive and Spontaneously Hypertensive rats. Peptides. 1989; 10: 309–312. DOI: 10.1016/0196-9781(89)90035-1
- 35Fang, L, Chen, MF, Xiao, ZL, Liu, Y, Yu, GL, Chen, XB and Xie, XM. Calcitonin gene-related peptide released from endothelial progenitor cells inhibits the proliferation of rat vascular smooth muscle cells induced by angiotensin II. Mol. Cell Biochem. 2011; 355: 99–108. DOI: 10.1007/s11010-011-0843-0
- 36Lin, HY, Lee, YT, Chan, YW and Tse, G. Animal models for the study of primary and secondary hypertension in humans. Biomed Rep. 2016; 5(6): 653–659. DOI: 10.3892/br.2016.784
- 37Smyth, HS, Sleight, C and Pickering, GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Cir. Res. 1969; 24(1): 109–121. DOI: 10.1161/01.RES.24.1.109
- 38Laragh, JH. On the Mechanisms and Clinical Relevance of One-Kidney, One-Clip Hypertension. 1991; 4(10): 541S–545S. DOI: 10.1093/ajh/4.10.541S
- 39Lin, HY, Lee, YT, Chan, YW and Tse, G. Animal models for the study of primary and secondary hypertension in humans. Biomed Rep. 2016; 5(6): 653–659. DOI: 10.3892/br.2016.784
- 40Gongadze, NV, Kezeli, TD, Sukoyan, GV, Chapichadze, Z, Dolidze, NM, Mirziashvili, M and Chipashvili, M. Deterioration in Hemodynamics Reaction, Baroreflex Sensitivity, Sympathetic Nerve Activity and Redox State of Thoracic Aorta in the Experimental Model of Nitrate Tolerance and Its Pharmacological Correction. Pharmacology & Pharmacy. 2016; 7: 81–88. DOI: 10.4236/pp.2016.71011
- 41Mohri, T, Emoto, N, Nonaka, H, Fuhuya, H, Yagita, K, Okamura, H and Yokoyama, M. Alterations of circadian expression of clock genes in Dahl salt-sensitive rats fed a high-salt diet. Hypertension. 2003; 42: 189–194. DOI: 10.1161/01.HYP.0000082766.63952.49
- 42Karsanov, NV, Sukoyan, GV, Kavadze, IK, Salibegashvili, NV and Golovach, IV. Endothelial dysfunction, redox-potential of energy supply systems and aldosterone synthesis in chronic heart failure with and without atrial fibrillation. Russian Cardiology J. 2003; 39(1): 28–31.
- 43Hughes, AK, Cline, RC and Kohan, DE. Alterations in renal endothelin-1 production in the spontaneously hypertensive rat. Hypertension. 1992; 20(5): 666–673. DOI: 10.1161/01.HYP.20.5.666
- 44Bonny, O, Vinciguerra, M, Gumz, ML and Mazzoccolli, G. Molecular bases of circadian rhythmicity in renal physiology and pathology. Nephrol. Dial. Transplant. 2013; 28(10): 2421–2431. DOI: 10.1093/ndt/gft319
- 45Morisseau, C and Hammock, BD. Epoxide hydrolases: mechanisms, inhibitor designs and biological roles. Annu. Rev. Pharmacol. Toxicol. 2005; 45: 311–333. DOI: 10.1146/annurev.pharmtox.45.120403.095920
- 46Neckar, J, Kopkan, L, Huskova, Z, Kolar, F, Papousek, F, Kramer, HJ, et al. Inhibition of soluble epoxide hydrolase by cis-4[4-(3-adamantan-1-ylureido) cyclohexyloxy] benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clinical Science. 2012; 122: 513–525. DOI: 10.1042/CS20110622
- 47Watanabe, H, Vriens, J, Prenen, J, Droogmans, G, Voets, T and Nilius, B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003; 424: 434–438. DOI: 10.1038/nature01807
- 48Liff, JJ, Fairbanks, SL, Balkowiec, A and Alkayed, NJ. Epoxyeicosatrienoic acids are endogenous regulators of vasoactive neuropeptide release from trigeminal ganglion neurons. J. Neurochem. 2010; 115(6): 1530–42. DOI: 10.1111/j.1471-4159.2010.07059.x
- 49Simpkins, AN, Rudic, RD, Schreihofer, DA, Roy, S, Manhiani, M, Tsai, HJ, et al. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Am. J. Phathol. 2009; 174(6); 2086–2095. DOI: 10.2353/ajpath.2009.080544
