Have a personal or library account? Click to login
Circadian Variation in Vasoconstriction and Vasodilation Mediators and Baroreflex Sensitivity in Hypertensive Rats Cover

Circadian Variation in Vasoconstriction and Vasodilation Mediators and Baroreflex Sensitivity in Hypertensive Rats

Open Access
|Oct 2019

References

  1. 1Hower, IM, Harper, SA and Buford, TW. Circadian rhythms, exercise, and cardiovascular health. Circadian Rhythm. 2018; 16(1): 18. DOI: 10.5334/jcr.164
  2. 2Chen, LH and Yang, GR. Recent advances in circadian rhythms in cardiovascular system. Frontiers in Pharmacology. 2015; 6: 7. DOI: 10.3389/fphar.2015.00071
  3. 3Douma, LG and Gumz, ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med. 2018; 119: 108114. DOI: 10.1016/j.freeradbiomed.2017.11.024
  4. 4Hood, S and Amir, SH. The aging clock:circadian rhythms and later life. J Clin Invest. 2017; 127(2): 437446. DOI: 10.1172/JCI90328
  5. 5Dampney, RAL. Resetting of the baroreflex control of sympathetic vasomotor activity during natural behaviours: description and conceptual model of central mechanisms. Fornt. Neurosci. 2017; 11: 461. DOI: 10.3389/fnins.2017.00461
  6. 6Gregorski, MJ, Buxbaum, SG, Kapuku, G, Dong, Y, Zhu, H, Davis, M, et al. Interactive influences of ethnicity, endothelin-1 gene, and everyday discrimination upon nocturnal ambulatory blood pressure. Annals Behavioral Medicine. 2013; 45(3): 377389. DOI: 10.1007/s12160-013-9472-z
  7. 7Speed, JS and Pollock, DM. Endothelin, Kidney Disease, and Hypertension. Hypertension. 2013; 61(6): 11421145. DOI: 10.1161/HYPERTENSIONAHA.113.00595
  8. 8Hu, M, Lu, YP, Hasan, AA and Hocher, B. Plasma ET-1 concentrations are elevated in patients with hypertension – meta-analysis of clinical studies. Kidney Blood Press Res. 2017; 42: 304313. DOI: 10.1159/000477572
  9. 9Thosar, SS, Butler, MP and Shea, SA. Role of circadian system in cardiovascular disease. J Clin Invest. 2018; 128(6): 21572167. DOI: 10.1172/JCI80590
  10. 10Dhaun, N, Moorhouse, R, Macintyre, IM, Melville, V, Oosthuyzen, W, Kimmit, RA, et al. Diurnal Variation in Blood Pressure and Arterial Stiffness in Chronic Kidney Diseases: The role of Endothelin-1. Hypertension. 2014; 64(2): 296304. DOI: 10.1161/HYPERTENSIONAHA.114.03533
  11. 11Xu, M, Lu, YP, Hasan, AA and Hocher, B. Plasma ET-1 Concentrations are Elevated in Patients with Hypertension-Meta Analysis of Clinical Studies. Kidney Blood Pressure Res. 2017; 42: 304313. DOI: 10.1159/000477572
  12. 12Horinouchi, T, Terada, K, Higashi, T and Miwa, S. Endothelin receptor signaling: new insight into its regulatory mechanisms. J Pharmacol Sci. 2013; 123(2): 85101. DOI: 10.1254/jphs.13R02CR
  13. 13Davenport, AP, Hyndman, KA, Dhaun, N, Southan, Ch, Kohan, DE, Pollock, JS, et al. Endothelin. Pharmacol Rev. 2016; 68(2): 357418. DOI: 10.1124/pr.115.011833
  14. 14Felou, M and Vanhoutte, PM. Endothelium-derived hyperpolarizing factor: where are we know? J. Arterioscler. Thrombvasc. Biol. 2006; 26(6): 12151225. DOI: 10.1161/01.ATV.0000217611.81085.c5
  15. 15Wang, Y and Wang, DH. Prevention of endothelin-1-induced increases in blood pressure: role of endogenous CGRP. Am J Physiol Heart Circ Physiol. 2004; 287: H1868H1874. DOI: 10.1152/ajpheart.00241.2004
  16. 16Mai, TH, Wu, J, Diedrich, A and Robertson, D. Calcitonin gene-related peptide (CGRP) in autonomic cardiovascular regulation and vascular structure. J. of the American Society of Hypertension. 2014; 8(5): 286296. DOI: 10.1016/j.jash.2014.03.001
  17. 17Smillie, S and Brain, SD. Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neuropeptides. 2011; 45(2): 93104. DOI: 10.1016/j.npep.2010.12.002
  18. 18Supowit, SC, Ramana, CV, Westlund, KN and Dipette, DJ. Calcitonin gene-related peptide Gene Expression in the Spontaneously Hypertensive Rat. J. Hypertension. 1993; 21(6): 10101014. DOI: 10.1161/01.HYP.21.6.1010
  19. 19Portaluppi, F, Transforini, G, Margutti, A, Vergnani, L, Ambrosio, MR, Rossi, R, et al. Circadian rhythm of calcitonin gene-related peptide in uncomplicated essential hypertension. J. Hypertension. 1992; 10: 12271234. DOI: 10.1097/00004872-199210000-00017
  20. 20Hashikawa-Hobara, N, Hashikawa, N, Zamami, Y, Takatori, S and Kawasaki, H. The mechanism of calcitonin gene-related peptide-containing nerve innervations. J. Pharmacol. Sci. 2012; 119: 117121. DOI: 10.1254/jphs.12R02CP
  21. 21Deng, PY and Li, Y. Calcitonin gene-related peptide and Hypertension. Peptides. 2005; 26: 16761685. DOI: 10.1016/j.peptides.2005.02.002
  22. 22Russell, FA, King, R, Smillie, SJ, Kodji, X and Brain, SD. Calcitonin gene-related peptide: Physiology and Pathophysiology. Physiol. Rev. 2014; 94: 10991142. DOI: 10.1152/physrev.00034.2013
  23. 23Morisseau, C and Hammock, BD. Epoxide hydrolases: mechanisms, inhibitor designs and biological roles. Annu. Rev. Pharmacol. Toxicol. 2005; 45: 311333. DOI: 10.1146/annurev.pharmtox.45.120403.095920
  24. 24Imig, J, Elmarakby, A, Nithipatikom, K, Wei, S, Capdevila, JH, Tuniki, VR, et al. Development of epoxyeicosatrienoic acid analogs with in vivo anti-hypertensive actions. Front Physiol. 2010; 1: 157. DOI: 10.3389/fphys.2010.00157
  25. 25Dimitropoulou, C, West, L, Field, MB, White, RE, Reddy, LM, Falck, JR and Imig, D. Protein phosphatase 2 A and Ca2+-activated K+-channels contribute to 11, 12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. Prostaglandins & Other Lipid Mediat. 2006; 83(1–2): 5061. DOI: 10.1016/j.prostaglandins.2006.09.008
  26. 26Larsen, BT, Miura, H, Hatoum, OA, Camplell, WB, Hammock, BD, Zeldin, DC, et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK (Ca) channels: implications for soluble epoxide hydrolase inhibition. Am. J. Physiol. Heart Circ. Physiol. 2005; 290(2): H491499. DOI: 10.1152/ajpheart.00927.2005
  27. 27Minuz, P, Jiang, H, Fava, C, Turolo, L, Tacconelli, S, Ricci, M, et al. Altered Release of Cytochrome P450 Metabolites of Arachidonic Acid in Renovascular Disease. J. Hypertension. 2008; 51(5): 13791385. DOI: 10.1161/HYPERTENSIONAHA.107.105395
  28. 28Yu, Z, Xu, F, Huse, LM, Morisseau, C, Draper, AJ, Newman, JW, et al. Soluble Epoxide Hydrolase Regulates Hydrolysis of vasoactive Epoxyeicosatrienoic Acids. Circ. Res. 2000; 87(11): 992998. DOI: 10.1161/01.RES.87.11.992
  29. 29Pearce, WJ. In cerebrovascular circadian rhythms, EETs keep the beat. Focus on “Rhythmic expression to cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature”. Am. J. Physiol. Cell Physiol. 2014; 307(11): C986988. DOI: 10.1152/ajpcell.00327.2014
  30. 30Carver, KA, Lourim, D, Tryba, AK and Harder, DR. Rhythmic expression of cytochrome P450 epoxygenases CYP4X1 and CYP2C11 in the rat brain and vasculature. Am. J. Phys. Cell Physiol. 2014; 37(11): C989C998. DOI: 10.1152/ajpcell.00401.2013
  31. 31Transforini, G, Margutti, A, Vergnani, L, et al. Evidence that enhancement of cholinergic tone increases basal plasma level of calcitonin gene-related peptide in normal man. J. Clin. Endocrinol. Metab. 1994; 78(3): 763766. DOI: 10.1210/jcem.78.3.8126154
  32. 32Supovit, SC, Rao, A, Bowers, MC, Zhao, H, Fink, G, Steficek, B, et al. Calcitonin Gene-related peptide protects against hypertension-induced Heart and Kidney Damage. Hypertension. 2005; 45: 109114. DOI: 10.1161/01.HYP.0000151130.34874.fa
  33. 33Wang, Z, Martorell, BC, Wälchli, T, Vogel, O, Fisher, J, Bom, W and Vogel, J. Calcitonin gene-related peptide (CGRP) receptors are important to maintain cerebrovascular reactivity in chronic hypertension. PLOS one. 2015; 10(4): e0123697. DOI: 10.1371/journal.pone.0123697
  34. 34Xu, D, Wang, X, Wang, JP and Yuan, QX. Calcitonin gene-related peptide (CGRP) in Normotensive and Spontaneously Hypertensive rats. Peptides. 1989; 10: 309312. DOI: 10.1016/0196-9781(89)90035-1
  35. 35Fang, L, Chen, MF, Xiao, ZL, Liu, Y, Yu, GL, Chen, XB and Xie, XM. Calcitonin gene-related peptide released from endothelial progenitor cells inhibits the proliferation of rat vascular smooth muscle cells induced by angiotensin II. Mol. Cell Biochem. 2011; 355: 99108. DOI: 10.1007/s11010-011-0843-0
  36. 36Lin, HY, Lee, YT, Chan, YW and Tse, G. Animal models for the study of primary and secondary hypertension in humans. Biomed Rep. 2016; 5(6): 653659. DOI: 10.3892/br.2016.784
  37. 37Smyth, HS, Sleight, C and Pickering, GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Cir. Res. 1969; 24(1): 109121. DOI: 10.1161/01.RES.24.1.109
  38. 38Laragh, JH. On the Mechanisms and Clinical Relevance of One-Kidney, One-Clip Hypertension. 1991; 4(10): 541S545S. DOI: 10.1093/ajh/4.10.541S
  39. 39Lin, HY, Lee, YT, Chan, YW and Tse, G. Animal models for the study of primary and secondary hypertension in humans. Biomed Rep. 2016; 5(6): 653659. DOI: 10.3892/br.2016.784
  40. 40Gongadze, NV, Kezeli, TD, Sukoyan, GV, Chapichadze, Z, Dolidze, NM, Mirziashvili, M and Chipashvili, M. Deterioration in Hemodynamics Reaction, Baroreflex Sensitivity, Sympathetic Nerve Activity and Redox State of Thoracic Aorta in the Experimental Model of Nitrate Tolerance and Its Pharmacological Correction. Pharmacology & Pharmacy. 2016; 7: 8188. DOI: 10.4236/pp.2016.71011
  41. 41Mohri, T, Emoto, N, Nonaka, H, Fuhuya, H, Yagita, K, Okamura, H and Yokoyama, M. Alterations of circadian expression of clock genes in Dahl salt-sensitive rats fed a high-salt diet. Hypertension. 2003; 42: 189194. DOI: 10.1161/01.HYP.0000082766.63952.49
  42. 42Karsanov, NV, Sukoyan, GV, Kavadze, IK, Salibegashvili, NV and Golovach, IV. Endothelial dysfunction, redox-potential of energy supply systems and aldosterone synthesis in chronic heart failure with and without atrial fibrillation. Russian Cardiology J. 2003; 39(1): 2831.
  43. 43Hughes, AK, Cline, RC and Kohan, DE. Alterations in renal endothelin-1 production in the spontaneously hypertensive rat. Hypertension. 1992; 20(5): 666673. DOI: 10.1161/01.HYP.20.5.666
  44. 44Bonny, O, Vinciguerra, M, Gumz, ML and Mazzoccolli, G. Molecular bases of circadian rhythmicity in renal physiology and pathology. Nephrol. Dial. Transplant. 2013; 28(10): 24212431. DOI: 10.1093/ndt/gft319
  45. 45Morisseau, C and Hammock, BD. Epoxide hydrolases: mechanisms, inhibitor designs and biological roles. Annu. Rev. Pharmacol. Toxicol. 2005; 45: 311333. DOI: 10.1146/annurev.pharmtox.45.120403.095920
  46. 46Neckar, J, Kopkan, L, Huskova, Z, Kolar, F, Papousek, F, Kramer, HJ, et al. Inhibition of soluble epoxide hydrolase by cis-4[4-(3-adamantan-1-ylureido) cyclohexyloxy] benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clinical Science. 2012; 122: 513525. DOI: 10.1042/CS20110622
  47. 47Watanabe, H, Vriens, J, Prenen, J, Droogmans, G, Voets, T and Nilius, B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003; 424: 434438. DOI: 10.1038/nature01807
  48. 48Liff, JJ, Fairbanks, SL, Balkowiec, A and Alkayed, NJ. Epoxyeicosatrienoic acids are endogenous regulators of vasoactive neuropeptide release from trigeminal ganglion neurons. J. Neurochem. 2010; 115(6): 153042. DOI: 10.1111/j.1471-4159.2010.07059.x
  49. 49Simpkins, AN, Rudic, RD, Schreihofer, DA, Roy, S, Manhiani, M, Tsai, HJ, et al. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Am. J. Phathol. 2009; 174(6); 20862095. DOI: 10.2353/ajpath.2009.080544
DOI: https://doi.org/10.5334/jcr.185 | Journal eISSN: 1740-3391
Language: English
Submitted on: May 30, 2019
Accepted on: Sep 29, 2019
Published on: Oct 14, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Tamar Kezeli, Nikoloz Gongadze, Galina Sukoyan, Marina Shikhashvili, Zaza Chapichadze, Maia Okujava, Nino Dolidze, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.