References
- 1Hobson, JA and Pace-Schott, EF. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci. 2002; 3: 679–693. DOI: 10.1038/nrn915
- 2Thomas, M, Sing, H, Belenky, G, Holcomb, H, Mayberg, H, Dannals, R, Wagner, H, Thorne, D, Popp, K, Rowland, L, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000; 9: 335–352. DOI: 10.1046/j.1365-2869.2000.00225.x
- 3Muzur, A, Pace-Schott, EF and Hobson, JA. The prefrontal cortex in sleep. Trends Cogn Sci. 2002; 6: 475–481. DOI: 10.1016/S1364-6613(02)01992-7
- 4Leenaars, CH, Joosten, RN, Zwart, A, Sandberg, H, Ruimschotel, E, Hanegraaf, MA, Dematteis, M, Feenstra, MG and van Someren, EJ. Switch-task performance in rats is disturbed by 12 h of sleep deprivation but not by 12 h of sleep fragmentation. Sleep. 2012; 35: 211–221. DOI: 10.5665/sleep.1624
- 5Reichert, CF, Maire, M, Schmidt, C and Cajochen, C. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine. Biology (Basel). 2016; 5. DOI: 10.3390/biology5010011
- 6Menon, JML, Nolten, C, Achterberg, EJM, Joosten, RNJMA, Dematteis, M, Feenstra, MGP, Drinkenburg, WH and Leenaars, CHC. Brain Microdialysate Monoamines in Relation to Circadian Rhythms, Sleep, and Sleep Deprivation – a Systematic Review, Network Meta-analysis, and New Primary Data. J Circadian Rhythms. 2019; 17: 1. DOI: 10.5334/jcr.174
- 7Leenaars, CHC, Savelyev, SA, Van der Mierden, S, Joosten, R, Dematteis, M, Porkka-Heiskanen, T and Feenstra, MGP. Intracerebral Adenosine During Sleep Deprivation: A Meta-Analysis and New Experimental Data. J Circadian Rhythms. 2018; 16: 11. DOI: 10.5334/jcr.171
- 8Scammell, TE, Arrigoni, E and Lipton, JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017; 93: 747–765. DOI: 10.1016/j.neuron.2017.01.014
- 9Cooper, JR, Bloom, FE and Roth, RH. The Biochemical Basis of Neuropharmacology. New York: Oxford University Press; 2003.
- 10Feldman, RS, Meyer, JS and Quenzer, LF. Principles of Neuropsychopharmacology. Sunderland, Massachusetts: Sinauer Associates, Inc.; 1997.
- 11Westerink, BH, Damsma, G, Rollema, H, De Vries, JB and Horn, AS. Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci. 1987; 41: 1763–1776. DOI: 10.1016/0024-3205(87)90695-3
- 12Leenaars, CH, Dematteis, M, Joosten, RN, Eggels, L, Sandberg, H, Schirris, M, Feenstra, MG and Van Someren, EJ. A new automated method for rat sleep deprivation with minimal confounding effects on corticosterone and locomotor activity. J Neurosci Methods. 2011; 196: 107–117. DOI: 10.1016/j.jneumeth.2011.01.014
- 13Cohen, SA and Michaud, DP. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem. 1993; 211: 279–287. DOI: 10.1006/abio.1993.1270
- 14Liu, H, Sanuda-Pena, MC, Harvey-White, JD, Kalra, S and Cohen, SA. Determination of submicromolar concentrations of neurotransmitter amino acids by fluorescence detection using a modification of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate method for amino acid analysis. J Chromatogr A. 1998; 828: 383–395. DOI: 10.1016/S0021-9673(98)00836-X
- 15Feenstra, MG and Botterblom, MH. Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty. Brain Res. 1996; 742: 17–24. DOI: 10.1016/S0006-8993(96)00945-6
- 16Paxinos, G and Watson, CJ. The Rat Brain in Stereotaxic Coordinates. Cambridge, Massachusetts: Academic Press; 2004.
- 17Leenaars, CHC, Freymann, J, Jakobs, K, Menon, JML, Van Ee, TJ, Elzinga, J, Kempkes, RWM, Zoer, B and Drinkenburg, P. A Systematic Search and Mapping Review of Studies on Intracerebral Microdialysis of Amino Acids, and Systematized Review of Studies on Circadian Rhythms. J Circadian Rhythms. 2018; 16: 12. DOI: 10.5334/jcr.172
- 18van der Mierden, S, Savelyev, SA, IntHout, J, de Vries, RBM and Leenaars, CHC. Intracerebral microdialysis of adenosine and adenosine monophosphate – a systematic review and meta-regression analysis of baseline concentrations. J Neurochem. 2018; 147: 58–70. DOI: 10.1111/jnc.14552
- 19Hooijmans, CR, Tillema, A, Leenaars, M and Ritskes-Hoitinga, M. Enhancing search efficiency by means of a search filter for finding all studies on animal experimentation in PubMed. Lab Anim. 2010; 44: 170–175. DOI: 10.1258/la.2010.009117
- 20de Vries, RB, Hooijmans, CR, Tillema, A, Leenaars, M and Ritskes-Hoitinga, M. A search filter for increasing the retrieval of animal studies in Embase. Lab Anim. 2011; 45: 268–270. DOI: 10.1258/la.2011.011056
- 21Leenaars, CHC, Van Luijk, JAKR, Freymann, J, Van Ee, TJ, Zoer, B, Drinkenburg, WH and De Vries, RBM. Amino acids in microdialysates (protocol). vol. 2018.
www.SYRCLE.nl ; 2017. - 22John, J, Ramanathan, L and Siegel, JM. Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am J Physiol Regul Integr Comp Physiol. 2008; 295: R2041–2049. DOI: 10.1152/ajpregu.90541.2008
- 23Kekesi, KA, Dobolyi, A, Salfay, O, Nyitrai, G and Juhasz, G. Slow wave sleep is accompanied by release of certain amino acids in the thalamus of cats. Neuroreport. 1997; 8: 1183–1186. DOI: 10.1097/00001756-199703240-00025
- 24Pires, GN, Bezerra, AG, Tufik, S and Andersen, ML. Effects of experimental sleep deprivation on anxiety-like behavior in animal research: Systematic review and meta-analysis. Neurosci Biobehav Rev. 2016; 68: 575–589. DOI: 10.1016/j.neubiorev.2016.06.028
- 25Hooijmans, CR, Rovers, MM, de Vries, RB, Leenaars, M, Ritskes-Hoitinga, M and Langendam, MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14: 43. DOI: 10.1186/1471-2288-14-43
- 26Gronli, J, Fiske, E, Murison, R, Bjorvatn, B, Sorensen, E, Ursin, R and Portas, CM. Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behav Brain Res. 2007; 181: 42–51. DOI: 10.1016/j.bbr.2007.03.018
- 27Azuma, S, Kodama, T, Honda, K and Inoue, S. State-dependent changes of extracellular glutamate in the medial preoptic area in freely behaving rats. Neurosci Lett. 1996; 214: 179–182. DOI: 10.1016/0304-3940(96)12918-9
- 28Chu, M, Huang, ZL, Qu, WM, Eguchi, N, Yao, MH and Urade, Y. Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Neurosci Res. 2004; 417–420. DOI: 10.1016/j.neures.2004.05.001
- 29Hasegawa, T, Azum, S and Inoue, S. Amino acid release from the rat oral pontine reticular nucleus across the sleep-wakefulness cycle. J Med Dent Sci. 2000; 47: 87–93.
- 30Kodama, T, Lai, YY and Siegel, JM. Enhanced glutamate release during REM sleep in the rostromedial medulla as measured by in vivo microdialysis. Brain Res. 1998; 780: 178–181. DOI: 10.1016/S0006-8993(97)01308-5
- 31Lena, I, Parrot, S, Deschaux, O, Muffat-Joly, S, Sauvinet, V, Renaud, B, Suaud-Chagny, MF and Gottesmann, C. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005; 81: 891–899. DOI: 10.1002/jnr.20602
- 32Lopez-Rodriguez, F, Medina-Ceja, L, Wilson, CL, Jhung, D and Morales-Villagran, A. Changes in Extracellular Glutamate Levels in Rat Orbitofrontal Cortex During Sleep and Wakefulness. Archives of Medical Research. 2007; 52–55. DOI: 10.1016/j.arcmed.2006.07.004
- 33Nitz, D and Siegel, J. GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol. 1997; 273: R451–455. DOI: 10.1152/ajpregu.1997.273.1.R451
- 34Nitz, D and Siegel, JM. GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience. 1997; 78: 795–801. DOI: 10.1016/S0306-4522(96)00549-0
- 35Strecker, RE, Nalwalk, J, Dauphin, LJ, Thakkar, MM, Chen, Y, Ramesh, V, Hough, LB and McCarley, RW. Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience. 2002; 113: 663–670. DOI: 10.1016/S0306-4522(02)00158-6
- 36Vanini, G, Wathen, BL, Lydic, R and Baghdoyan, HA. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci. 2011; 31: 2649–2656. DOI: 10.1523/JNEUROSCI.5674-10.2011
- 37Vanini, G, Lydic, R and Baghdoyan, HA. GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep. 2012; 35: 1325–1334. DOI: 10.5665/sleep.2106
- 38Watson, CJ, Lydic, R and Baghdoyan, HA. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J Neurochem. 2011; 118: 571–580. DOI: 10.1111/j.1471-4159.2011.07350.x
- 39Xie, F, Li, X, Bao, M, Shi, R, Yue, Y, Guan, Y and Wang, Y. Anesthetic propofol normalized the increased release of glutamate and gamma-amino butyric acid in hippocampus after paradoxical sleep deprivation in rats. Neurol Res. 2015; 37: 1102–1107. DOI: 10.1080/01616412.2015.1114231
- 40Zant, JC, Rozov, S, Wigren, HK, Panula, P and Porkka-Heiskanen, T. Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. J Neurosci. 2012; 13244–13254. DOI: 10.1523/JNEUROSCI.5933-11.2012
- 41Dash, MB, Douglas, CL, Vyazovskiy, VV, Cirelli, C and Tononi, G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci. 2009; 29: 620–629. DOI: 10.1523/JNEUROSCI.5486-08.2009
- 42Castaneda, TR, de Prado, BM, Prieto, D and Mora F. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res. 2004; 177–185. DOI: 10.1046/j.1600-079X.2003.00114.x
- 43Fell, MJ, Flik, G, Dijkman, U, Folgering, JH, Perry, KW, Johnson, BJ, Westerink, BH and Svensson, KA. Glutamatergic regulation of brain histamine neurons: In vivo microdialysis and electrophysiology studies in the rat. Neuropharmacology. 2015; 1–8. DOI: 10.1016/j.neuropharm.2015.05.034
- 44Hong, ZY, Huang, ZL, Qu, WM and Eguchi, N. Orexin A promotes histamine, but not norepinephrine or serotonin, release in frontal cortex of mice. Acta Pharmacol Sin. 2005; 155–159. DOI: 10.1111/j.1745-7254.2005.00523.x
- 45Fliegel, S, Brand, I, Spanagel, R and Noori, HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol. 2013; 1: 7. DOI: 10.1186/2193-9616-1-7
