References
- 1Foster, RG and Kreitzman, L.
Rhythm of life: the biological clocks that control the dayly lives of every living thing . Yale University Press, New Haven and London; 2005. - 2Touitou, Y, Reinberg, A and Touitou, D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sciences. 2017; 173: 94–106. DOI: 10.1016/j.lfs.2017.02.008
- 3Kecklund, G and Axelsson, J. Health consequences of shift work and insufficient sleep. BMJ. 2016; 355: i5210. DOI: 10.1136/bmj.i5210
- 4Kim, H, Jeong, G, Park, YK and Kang, SW. Sleep quality and nutritional intake in subjects with sleep issues according to perceived stress levels. J Lifestyle Med. 2018; 8(1): 42–9. DOI: 10.15280/jlm.2018.8.1.42
- 5Martin, JS, Laberge, L, Sasseville, A, Bérubé, M, Alain, S, Houle, J, et al. Day and night shift schedules are associated with lower sleep quality in Evening-types. Chronobiol Int. 2015; 32(5): 627–36. DOI: 10.3109/07420528.2015.1033425
- 6Chung, KH, Li, CY, Kuo, SY, Sithole, T, Liu, WW and Chung, MH. Risk of psychiatric disorders in patients with chronic insomnia and sedative-hypnotic prescription: a nationwide population-based follow-up study. J Clin Sleep Med. 2015; 11(5): 543–51. DOI: 10.5664/jcsm.4700
- 7Yang, B, Wang, Y, Cui, F, Huang, T, Sheng, P, Shi, T, et al. Association between insomnia and job stress: a meta-analysis. Sleep Breath; 2018. DOI: 10.1007/s11325-018-1682-y
- 8Waters, F and Bucks, RS. Neuropsychological effects of sleep loss: implication for neuropsychologists. J Int Neuropsychol Soc. 2011; 17(4): 571–86. DOI: 10.1017/S1355617711000610
- 9Horne, J.
Sleepfaring: A Journey Through the Science of Sleep . Oxford University Press; 2007. - 10Abrams, RM. Sleep Deprivation. Obstet Gynecol Clin North Am. 2015; 42(3): 493–506. DOI: 10.1016/j.ogc.2015.05.013
- 11Shekari Soleimanloo, S, White, MJ, Garcia-Hansen, V and Smith, SS. The effects of sleep loss on young drivers’ performance: A systematic review. PLoS One. 2017; 12(8):
e0184002 . DOI: 10.1371/journal.pone.0184002 - 12Parker, RS and Parker, P. The impact of sleep deprivation in military surgical teams: a systematic review. J R Army Med Corps. 2017; 163(3): 158–63. DOI: 10.1136/jramc-2016-000640
- 13Costa, G.
Chapter 24 – Sleep deprivation due to shift work . In: Lotti, M and Bleecker, ML (Eds.), Handbook of Clinical Neurology. 2015; 131: 437–46. Elsevier. DOI: 10.1016/B978-0-444-62627-1.00023-8 - 14Institute of Medicine (US) Committee on Sleep Medicine and Research.
Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem . In: Colten, HR and Altevogt, BM (eds.), Washington (DC): National Academies Press (US); 2006. The National Academies Collection: Reports funded by National Institutes of Health. - 15Murillo-Rodríguez, E, Arias-Carrión, O, Zavala-García, A, Sarro-Ramírez, A, Huitrón-Reséndiz, S and Arankowsky-Sandoval, G. Basic sleep mechanisms an integrative review. Cent Nerv Syst Agents Med Chem. 2012; 12: 38–54. DOI: 10.2174/187152412800229107
- 16Luppi, PH and Fort, P. Neurochemistry of sleep: an overview of animal experimental work. Handbook of Clinical Neurology, Sleep Disorders, Part 1. 2011; 98: 173–90. 3rd series, chapter 11. DOI: 10.1016/B978-0-444-52006-7.00011-3
- 17Takahashi, H.
Monoamines and Decision-Making Under Risks . In: Reuter, M and Montag, C (Eds.), Neuroeconomics. 2016; 85–95. Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-35923-1_5 - 18Puig, MV, Rose, J, Schmidt, R and Freund, N. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Front Neural Circuits. 2014; 8: 93. DOI: 10.3389/fncir.2014.00093
- 19Lovheim, H. A new three-dimensional model for emotions and monoamine neurotransmitters. Med Hypotheses. 2012; 78(2): 341–8. DOI: 10.1016/j.mehy.2011.11.016
- 20Ungerstedt, U and Hallstrom, A. In vivo microdialysis– a new approach to the analysis of neurotransmitters in the brain. Life Sci. 1987; 41(7): 861–4. DOI: 10.1016/0024-3205(87)90181-0
- 21Westerink, BH, Damsma, G, Rollema, H, De Vries, JB and Horn, AS. Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci. 1987; 41(15): 1763–76. DOI: 10.1016/0024-3205(87)90695-3
- 22Di Chiara, G. In-vivo brain dialysis of neurotransmitters. Trends Pharmacol Sci. 1990; 11(3): 116–21. DOI: 10.1016/0165-6147(90)90197-G
- 23Anderzhanova, E and Wotjak, CT. Brain microdialysis and its applications in experimental neurochemistry. Cell Tissue Res. 2013; 354(1): 27–39. DOI: 10.1007/s00441-013-1709-4
- 24Chefer, VI, Thompson, AC, Zapata, A and Shippenberg, TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009; Chapter 7: Unit 7 1.
- 25Leenaars, CH, Van Luijk, J, Freymann, J, van Ee, TJ, Zoer, B, Drinkenburg, WH, et al. Amino acids in microdialysates.
http://www.syrcle.nl/ . 2017; Protocol. - 26de Vries, RBM, Wever, KE, Avey, MT, Stephens, ML, Sena, ES and Leenaars, M. The Usefulness of Systematic Reviews of Animal Experiments for the Design of Preclinical and Clinical Studies. ILAR Journal. 2014; 55(3): 427–37. DOI: 10.1093/ilar/ilu043
- 27Westerink, BHC and Cremers, TIFH.
Handbook of microdialysis – methods, applications and perspectives . Amsterdam, the Netherlands: Elsevier – Academic Press; 2007. - 28Brand, I, Fliegel, S, Spanagel, R and Noori, HR. Global ethanol-induced enhancements of monoaminergic neurotransmission: a meta-analysis study. Alcohol Clin Exp Res. 2013; 37(12): 2048–57. DOI: 10.1111/acer.12207
- 29Fritze, S, Spanagel, R and Noori, HR. Adaptive dynamics of the 5-HT systems following chronic administration of selective serotonin reuptake inhibitors: a meta-analysis. Journal of Neurochemistry. 2017; 142(5): 747–55. DOI: 10.1111/jnc.14114
- 30Fliegel, S, Brand, I, Spanagel, R and Noori, HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. n Silico Pharmacol. 2013; 1: 7. DOI: 10.1186/2193-9616-1-7
- 31Noori, HR, Fliegel, S, Brand, I and Spanagel, R. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: a meta-analysis. Synapse. 2012; 66(10): 893–901. DOI: 10.1002/syn.21581
- 32Van der Mierden, S, Savelyev, SA, IntHout, J, De Vries, RBM and Leenaars, CHC. Intracerebral microdialysis of adenosine and AMP – a systematic review and meta-regression analysis J Neurochem. [Epub ahead of print].
- 33Leenaars, CH, Joosten, RN, Kramer, M, Post, G, Eggels, L, Wuite, M, et al. Spatial reversal learning is robust to total sleep deprivation. Behav Brain Res. 2012; 230(1): 40–7. DOI: 10.1016/j.bbr.2012.01.047
- 34Leenaars, CH, Joosten, RN, Zwart, A, Sandberg, H, Ruimschotel, E, Hanegraaf, MA, et al. Switch-task performance in rats is disturbed by 12 h of sleep deprivation but not by 12 h of sleep fragmentation. Sleep. 2012; 35(2): 211–21. DOI: 10.5665/sleep.1624
- 35Menon, JML, de Vries, RBM, Drinkenburg, WH and Leenaars, CH. Neurotransmitters and metabolites in brain microdialysates under sleep, circadian rhythms and sleep deprivation conditions – A systematic review.
http://www.syrcle.nl/ ; 2017. - 36Wisor, JP, Nishino, S, Sora, I, Uhl, GH, Mignot, E and Edgar, DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001; 21(5): 1787–94. DOI: 10.1523/JNEUROSCI.21-05-01787.2001
- 37Mitome, M. The central mechanism of feeding-associated circadian corticosterone rhythm in rats: analyses of paraventricular noradrenaline by in vivo microdialysis. [Japanese]. [Hokkaido igaku zasshi] The Hokkaido journal of medical science. 1994; 1: 120–35.
- 38Hooijmans, CR, Rovers, MM, de Vries, RB, Leenaars, M, Ritskes-Hoitinga, M and Langendam, MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14: 43. DOI: 10.1186/1471-2288-14-43
- 39Pires, GN, Bezerra, AG, Tufik, S and Andersen, ML. Effects of experimental sleep deprivation on anxiety-like behavior in animal research: systematic review and meta-analysis. Neurosci Biobehav Rev. 2016; 68: 575–89. DOI: 10.1016/j.neubiorev.2016.06.028
- 40Borenstein, M, Hedges, LV, Higgins, JPT and Rothstein, HR.
Introduction to meta-analysis . John Wiley & Sons, Ltd.; 2009. - 41Zeitzer, JM, Maidment, NT, Behnke, EJ, Ackerson, LC, Fried, I, Engel, J,
Jr. , et al. Ultradian sleep-cycle variation of serotonin in the human lateral ventricle. Neurology. 2002; 59(8): 1272–4. DOI: 10.1212/WNL.59.8.1272 - 42Bellesi, M, Tononi, G, Cirelli, C and Serra, PA. Region-specific dissociation between cortical noradrenaline levels and the sleep/wake cycle. Sleep. 2016; 1: 143–54. DOI: 10.5665/sleep.5336
- 43Leenaars, CH, Dematteis, M, Joosten, RN, Eggels, L, Sandberg, H, Schirris, M, et al. A new automated method for rat sleep deprivation with minimal confounding effects on corticosterone and locomotor activity. J Neurosci Methods. 2011; 196(1): 107–17. DOI: 10.1016/j.jneumeth.2011.01.014
- 44Fujino, K, Yoshitake, T, Kehr, J, Nohta, H and Yamaguchi, M. Simultaneous determination of 5-hydroxyindoles and catechols by high-performance liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine. J Chromatogr A. 2003; 1012(2): 169–77. DOI: 10.1016/S0021-9673(03)01180-4
- 45Glass, JD, Hauser, UE and Randolph, WW. In: vivo microdialysis of 5-hydroxyindoleacetic acid and glutamic acid in the hamster suprachiasmatic nuclei. Am Zool. 1993; 33: 212–8. DOI: 10.1093/icb/33.2.212
- 46Smith, AD, Olson, RJ and Justice, JB,
Jr. Quantitative microdialysis of dopamine in the striatum: Effect of circadian variation. J Neurosci Methods. 1992; 1: 33–41. DOI: 10.1016/0165-0270(92)90111-P - 47Sano, A, Aoi, K, Azekawa, T, Sei, H, Seno, H and Morita, Y. Diurnal monoamine variation in young and old rats: a microdialysis study. Journal of nutritional science and vitaminology. 1992; 577–80. DOI: 10.3177/jnsv.38.Special_577
- 48Ferris, MJ, Espana, RA, Locke, JL, Konstantopoulos, JK, Rose, JH, Chen, R, et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proceedings of the National Academy of Sciences of the United States of America. 2014; 26: E2751–E9. DOI: 10.1073/pnas.1407935111
- 49Yang, H, Thompson, AB, McIntosh, BJ, Altieri, SC and Andrews, AM. Physiologically relevant changes in serotonin resolved by fast microdialysis. ACS Chemical Neuroscience. 2013; 5: 790–8. DOI: 10.1021/cn400072f
- 50Jitsuki, S, Kimura, F, Funabashi, T, Takahashi, T and Mitsushima, D. Sex-specific 24-h profile of extracellular serotonin levels in the medial prefrontal cortex. Brain Res. 2009; 1260: 30–7. DOI: 10.1016/j.brainres.2008.12.084
- 51Hucke, EETS, Cruz-Casallas, PE, Florio, JC and Felicio, LF. Reproductive experience reduces striatal dopaminergic responses in freely moving female rats. NeuroReport. 1998; 16: 3589–93. DOI: 10.1097/00001756-199811160-00009
- 52De Marquez Prado, B, Castaneda, TR, Galindo, A, Del Arco, A, Segovia, G, Reiter, RJ, et al. Melatonin disrupts circadian rhythms of glutamate and GABA in the neostriatum of the awake rat: A microdialysis study. Journal of Pineal Research. 2000; 4: 209–16. DOI: 10.1034/j.1600-0633.2002.290403.x
- 53Decker, MJ, Jones, KA, Solomon, IG, Keating, GL and Rye, DB. Reduced extracellular dopamine and increased responsiveness to novelty: Neurochemical and behavioral sequelae of intermittent hypoxia. Sleep. 2005; 2: 169–76. DOI: 10.1093/sleep/28.2.169
- 54Dugovic, C, Shelton, JE, Aluisio, LE, Fraser, IC, Jiang, X, Sutton, SW, et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. Journal of Pharmacology and Experimental Therapeutics. 2009; 1: 142–51. DOI: 10.1124/jpet.109.152009
- 55Barbier, AJ, Aluisio, L, Lord, B, Qu, Y, Wilson, SJ, Boggs, JD, et al. Pharmacological characterization of JNJ-28583867, a histamine H3 receptor antagonist and serotonin reuptake inhibitor. Eur J Pharmacol. 2007; 576(1–3): 43–54. DOI: 10.1016/j.ejphar.2007.08.009
- 56Nakayama, K, Takeda, A, Hiyama, T, Yoshimuta, N and Ushijima, S. Diurnal rhythm of 5HIAA release determined by in vivo microdialysis in freely moving rats. Japanese Journal of Psychiatry and Neurology. 1993; 2: 491–3. DOI: 10.1111/j.1440-1819.1993.tb02164.x
- 57Robinson, JE, Kendrick, KM and Lambart, CE. Changes in the release of gamma-aminobutyric Acid and catecholamines in the preoptic/septal area prior to and during the preovulatory surge of luteinizing hormone in the ewe. J Neuroendocrinol. 1991; 4: 393–9. DOI: 10.1111/j.1365-2826.1991.tb00293.x
- 58Alfinito, PD, Chen, X, Mastroeni, R, Pawlyk, AC and Deecher, DC. Estradiol increases catecholamine levels in the hypothalamus of ovariectomized rats during the dark-phase. European Journal of Pharmacology. 2009; 1–3: 334–9. DOI: 10.1016/j.ejphar.2009.06.045
- 59Castaneda, TR, Marquez De Prado, B, Prieto, D and Mora, F. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: Modulation by light. Journal of Pineal Research. 2004; 3: 177–85. DOI: 10.1046/j.1600-079X.2003.00114.x
- 60Hood, S, Cassidy, P, Cossette, MP, Weigl, Y, Verwey, M, Robinson, B, et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci. 2010; 42: 14046–58. DOI: 10.1523/JNEUROSCI.2128-10.2010
- 61Paulson, PE and Robinson, TE. Relationship between Circadian changes in spontaneous motor activity and dorsal versus ventral striatal dopamine neurotransmission assessed with on- line microdialysis. Behavioral Neuroscience. 1994; 3: 624–35. DOI: 10.1037/0735-7044.108.3.624
- 62Paulson, PE and Robinson, TE. Regional differences in the effects of amphetamine withdrawal on dopamine dynamics in the striatum. Analysis of circadian patterns using automated on-line microdialysis. Neuropsychopharmacology. 1996; 5: 325–37. DOI: 10.1016/0893-133X(95)00141-Y
- 63Murillo-Rodriguez, E, Palomero-Rivero, M, Millan-Aldaco, D and Di Marzo, V. The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats. Physiology and Behavior. 2013; 1: 88–95. DOI: 10.1016/j.physbeh.2012.11.007
- 64Verhagen, LAW, Luijendijk, MCM, Korte-Bouws, GAH, Korte, SM and Adan, RAH. Dopamine and serotonin release in the nucleus accumbens during starvation-induced hyperactivity. European Neuropsychopharmacology. 2009; 5: 309–16. DOI: 10.1016/j.euroneuro.2008.12.008
- 65Fetissov, SO, Meguid, MM, Chen, C and Miyata, G. Synchronized release of dopamine and serotonin in the medial and lateral hypothalamus of rats. Neuroscience. 2000; 3: 657–63. DOI: 10.1016/S0306-4522(00)00374-2
- 66Izumo, N, Ishibashi, Y, Ohba, M, Morikawa, T and Manabe, T. Decreased voluntary activity and amygdala levels of serotonin and dopamine in ovariectomized rats. Behavioural Brain Research. 2012; 1: 1–6. DOI: 10.1016/j.bbr.2011.10.031
- 67Luo, S, Zhang, Y, Ezrokhi, M, Trubitsyna, Y and Cincotta, AH. High-fat feeding abolishes the insulin-sensitizing peak in circadian dopamine activity at the biological clock. Diabetes. 2014; A470.
- 68Huang, Z, Liu, T, Chattoraj, A, Ahmed, S, Wang, MM, Deng, J, et al. Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland. Journal of Pineal Research. 2008; 4: 506–14. DOI: 10.1111/j.1600-079X.2008.00627.x
- 69Sun, X, Deng, J, Liu, T and Borjigin, J. Circadian 5-HT production regulated by adrenergic signaling. Proceedings of the National Academy of Sciences of the United States of America. 2002; 7: 4686–91. DOI: 10.1073/pnas.062585499
- 70Sun, X, Liu, T, Deng, J and Borjigin, J. Long-term in vivo pineal microdialysis. Journal of Pineal Research. 2003; 2: 118–24. DOI: 10.1034/j.1600-079X.2003.00064.x
- 71Azekawa, T, Sano, A, Sei, H and Morita, Y. Diurnal changes in pineal extracellular indoles of freely moving rats. Neuroscience Letters. 1991; 1: 93–6. DOI: 10.1016/0304-3940(91)90441-U
- 72Liu, T and Borjigin, J. Free-running rhythms of pineal circadian output. Journal of Biological Rhythms. 2005; 5: 430–40. DOI: 10.1177/0748730405277868
- 73Liu, T and Borjigin, J. Relationship between nocturnal serotonin surge and melatonin onset in rodent pineal gland. Journal of Circadian Rhythms; 2006; 12.
- 74Garabette, ML, Martin, KF and Redfern, PH. Circadian variation in the activity of the 5-HT(1B) autoreceptor in the region of the suprachiasmatic nucleus, measured by microdialysis in the conscious freely-moving rat. British Journal of Pharmacology. 2000; 8: 1569–76. DOI: 10.1038/sj.bjp.0703753
- 75Grossman, GH, Mistlberger, RE, Antle, MC, Ehlen, JC and Glass, JD. Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus. NeuroReport. 2000; 9: 1929–32. DOI: 10.1097/00001756-200006260-00024
- 76Dudley, TE, DiNardo, LA and Glass, JD. Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. Journal of Neuroscience. 1998; 13: 5045–52. DOI: 10.1523/JNEUROSCI.18-13-05045.1998
- 77Barassin, S, Raison, S, Saboureau, M, Bienvenu, C, Maitre, M, Malan, A, et al. Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. European Journal of Neuroscience. 2002; 5: 833–40. DOI: 10.1046/j.1460-9568.2002.01928.x
- 78Knoch, ME, Gobes, SMH, Pavlovska, I, Su, C, Mistlberger, RE and Glass, JD. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters. European Journal of Neuroscience. 2004; 10: 2779–90. DOI: 10.1111/j.0953-816X.2004.03371.x
- 79Oshima, A, Flachskamm, C, Reul, JMHM, Holsboer, F and Linthorst, ACE. Altered Serotonergic Neurotransmission but Normal Hypothalamic-Pituitary- Adrenocortical Axis Activity in Mice Chronically Treated with the Corticotropin-Releasing Hormone Receptor Type I Antagonist NBI 30775. Neuropsychopharmacology. 2003; 12: 2148–59. DOI: 10.1038/sj.npp.1300267
- 80Lopez-Rodriguez, F, Wilson, CL, Maidment, NT, Poland, RE and Engel, J,
Jr. Total sleep deprivation increases extracellular serotonin in the rat hippocampus. Neuroscience. 2003; 2: 523–30. DOI: 10.1016/S0306-4522(03)00335-X - 81Linthorst, ACE, Flachskamm, C, Holsboer, F and Reul, JMHM. Local administration of recombinant human interleukin-1beta in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary- adrenocortical axis activity, and body temperature. Endocrinology. 1994; 2: 520–32. DOI: 10.1210/endo.135.2.7518383
- 82Kalen, P, Rosegren, E, Lindvall, O and Bjorklund, A. Hippocampal Noradrenaline and Serotonin Release over 24 Hours as Measured by the Dialysis Technique in Freely Moving Rats: Correlation to Behavioural Activity State, Effect of Handling and Tail-Pinch. Eur J Neurosci. 1989; 3: 181–8. DOI: 10.1111/j.1460-9568.1989.tb00786.x
- 83Pealva, RG, Flachskamm, C, Zimmermann, S, Wurst, W, Holsboer, F, Reul, JMHM, et al. Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: An in vivo microdialysis study in mutant mice. Neuroscience. 2002; 2: 253–66. DOI: 10.1016/S0306-4522(01)00475-4
- 84Takahashi, H, Takada, Y, Nagai, N, Urano, T and Takada, A. Extracellular serotonin in the striatum increased after immobilization stress only in the nighttime. Behavioural Brain Research. 1998; 1–2: 185–91. DOI: 10.1016/S0166-4328(97)00120-4
- 85Smriga, M, Kameishi, M, Uneyama, H and Torii, K. Dietary L-lysine deficiency increases stress-induced anxiety and fecal excretion in rats. Journal of Nutrition. 2002; 12: 3744–6. DOI: 10.1093/jn/132.12.3744
- 86Grossman, GH, Farnbauchm, L and Glass, JD. Regulation of serotonin release in the Syrian hamster intergeniculate leaflet region. NeuroReport. 2004; 1: 103–6. DOI: 10.1097/00001756-200401190-00021
- 87Sayer, TJO, Hannon, SD, Redfern, PH and Martin, KF. Diurnal variation in 5-HT(1B) autoreceptor function in the anterior hypothalamus in vivo: Effect of chronic antidepressant drug treatment. British Journal of Pharmacology. 1999; 8: 1777–84. DOI: 10.1038/sj.bjp.0702535
- 88Glass, JD, Hauser, UE, Blank, JL, Selim, M and Rea, MA. Differential timing of amino acid and 5-HIAA rhythms in suprachiasmatic hypothalamus. American Journal of Physiology-Regulatory Integrative and Comparative Physiology. 1993; 334–3: R504–R11.
- 89Luo, S, Luo, J and Cincotta, AH. Suprachiasmatic nuclei monoamine metabolism of glucose tolerant versus intolerant hamsters. NeuroReport. 1999; 10: 2073–7. DOI: 10.1097/00001756-199907130-00015
- 90Glass, JD, Hauser, UE, Randolph, W, Ferriera, S and Rea, MA. Suprachiasmatic nucleus neurochemistry in the conscious brain: correlation with circadian activity rhythms. Journal of biological rhythms. 1993; S47–52.
- 91Glass, JD, Randolph, WW, Ferreira, SA, Rea, MA, Hauser, UE, Blank, JL, et al. Diurnal variation in 5-hydroxyindole-acetic acid output in the suprachiasmatic region of the siberian hamster assessed by in vivo microdialysis: Evidence for nocturnal activation of serotonin release. Neuroendocrinology. 1992; 4: 582–90. DOI: 10.1159/000126277
- 92Luo, S, Luo, J and Cincotta, AH. Association of the antidiabetic effects of bromocriptine with a shift in the daily rhythm of monoamine metabolism within the suprachiasmatic nuclei of the Syrian hamster. Chronobiology International. 2000; 2: 155–72. DOI: 10.1081/CBI-100101040
- 93Nakayama, K. Diurnal rhythm in extracellular levels of 5-hydroxyindoleacetic acid in the medial prefrontal cortex of freely moving rats: An in vivo microdialysis study. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2002; 7–8: 1383–8. DOI: 10.1016/S0278-5846(02)00304-4
- 94Ezrokhi, M, Luo, S, Trubitsyna, Y and Cincotta, AH. Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats. Diabetology and Metabolic Syndrome. 2014; 418.
- 95Luo, S, Meier, AH and Cincotta, AH. Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology. 1998; 1: 1–10. DOI: 10.1159/000054344
- 96Stanley, BG, Schwartz, DH, Hernandez, L, Leibowitz, SF and Hoebel, BG. Patterns of extracellular 5-hydroxyindoleacetic acid (5-HIAA) in the paraventricular hypothalamus (PVN): Relation to circadian rhythm and deprivation-induced eating behavior. Pharmacology Biochemistry and Behavior. 1989; 1: 257–60. DOI: 10.1016/0091-3057(89)90459-0
- 97Gonzalez-Pina, R, Alfaro-Rodriguez, A and De Jesus Morales-Martinez, J. The Role of the Dorsal Raphe in the Sleep Disruptions Produced by Ozone Exposure. Proceedings of the Western Pharmacology Society. 2003; 116–20.
- 98Stanley, BG, Schwartz, DH, Hernandez, L, Hoebel, BG and Leibowitz, SF. Patterns of extracellular norepinephrine in the paraventricular hypothalamus: Relationship to circadian rhythm and deprivation-induced eating behavior. Life Sciences. 1989; 4: 275–82. DOI: 10.1016/0024-3205(89)90136-7
- 99Mitome, M, Honma, S, Yoshihara, T and Honma, KI. Prefeeding increase in paraventricular NE release is regulated by a feeding-associated rhythm in rats. American Journal of Physiology – Endocrinology and Metabolism. 1994; 429–4: E606–E11.
- 100Morien, A, Wellman, PJ and Fojt, J. Diurnal rhythms of paraventricular hypothalamic norepinephrine and food intake in rats. Pharmacology Biochemistry and Behavior. 1995; 1: 169–74. DOI: 10.1016/0091-3057(95)00084-A
- 101Smriga, M and Torii, K. Preferable Monosodium Glutamate and Sodium Chloride Solutions do not Affect Diurnal Norepinephrine Release in the Rat Lateral Hypothalamus. Nutr Neurosci. 2000; 5: 367–72. DOI: 10.1080/1028415X.2000.11747334
- 102Smriga, M, Mori, M and Torii, K. Circadian release of hypothalamic norepinephrine in rats in vivo is depressed during early L-lysine deficiency. Journal of Nutrition. 2000; 6: 1641–3. DOI: 10.1093/jn/130.6.1641
- 103Drijfhout, WJ, Van Der Linde, AG, Kooi, SE, Grol, CJ and Westerink, BHC. Norepinephrine release in the rat pineal gland: The input from the biological clock measured by in vivo microdialysis. Journal of Neurochemistry. 1996; 2: 748–55. DOI: 10.1046/j.1471-4159.1996.66020748.x
- 104Orosco, M, Rouch, C, De Saint-Hilaire, Z and Nicolaidis, S. Dynamic changes in hypothalamic monoamines during sleep/wake cycles assessed by parallel EEG and microdialysis in the rat. Journal of Sleep Research. 1995; 3: 144–9. DOI: 10.1111/j.1365-2869.1995.tb00163.x
- 105Nicolaidis, S, Gerozissis, K and Orosco, M. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat]. Rev Neurol (Paris). 2001; 11(Pt 2): S26–33.
- 106Shouse, MN, Staba, RJ, Saquib, SF and Farber, PR. Monoamines and sleep: Microdialysis findings in pons and amygdala. Brain Research. 2000; 1–2: 181–9. DOI: 10.1016/S0006-8993(00)02013-8
- 107Shouse, MN, Staba, RJ, Ko, PY, Saquib, SF and Farber, PR. Monoamines and seizures: Microdialysis findings in locus ceruleus and amygdala before and during amygdala kindling. Brain Research. 2001; 1: 176–92. DOI: 10.1016/S0006-8993(00)03292-3
- 108Shouse, MN, Staba, RJ, Saquib, SF and Farber, PR. Long-lasting effects of feline amygdala kindling on monoamines, seizures and sleep. Brain Research. 2001; 1: 147–65. DOI: 10.1016/S0006-8993(00)03265-0
- 109Lena, I, Parrot, S, Deschaux, O, Muffat-Joly, S, Sauvinet, V, Renaud, B, et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research. 2005; 6: 891–9. DOI: 10.1002/jnr.20602
- 110De Saint Hilaire, Z, Orosco, M, Rouch, C, Python, A and Nicolaidis, S. Neuromodulation of the prefrontal cortex during sleep: A microdialysis study in rats. NeuroReport. 2000; 8: 1619–24. DOI: 10.1097/00001756-200006050-00005
- 111Wilkinson, LO, Auerbach, SB and Jacobs, BL. Extracellular serotonin levels change with behavioral state but not with pyrogen-induced hyperthermia. Journal of Neuroscience. 1991; 9: 2732–41. DOI: 10.1523/JNEUROSCI.11-09-02732.1991
- 112Python, A, Steimer, T, De Saint Hilaire, Z, Mikolajewski, R and Nicolaidis, S. Extracellular serotonin variations during vigilance states in the preoptic area of rats: A microdialysis study. Brain Research. 2001; 1–2: 49–54. DOI: 10.1016/S0006-8993(01)02477-5
- 113Park, SP, Lopez-Rodriguez, F, Wilson, CL, Maidment, N, Matsumoto, Y and Engel, J,
Jr. In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness. Brain Research. 1999; 2: 291–6. DOI: 10.1016/S0006-8993(99)01511-5 - 114Gronli, J, Fiske, E, Murison, R, Bjorvatn, B, Sorensen, E, Ursin, R, et al. Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behavioural Brain Research. 2007; 1: 42–51. DOI: 10.1016/j.bbr.2007.03.018
- 115Bjorvatn, B, Gronli, J, Hamre, F, Sorensen, E, Fiske, E, Bjorkum, A, et al. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat. Neuroscience. 2002; 2: 323–30. DOI: 10.1016/S0306-4522(02)00181-1
- 116Penalva, RG, Lancel, M, Flachskamm, C, Reul, JMHM, Holsboer, F and Linthorst, ACE. Effect of sleep and sleep deprivation on serotonergic neurotransmission in the hippocampus: A combined in vivo microdialysis/EEG study in rats. European Journal of Neuroscience. 2003; 9: 1896–906. DOI: 10.1046/j.1460-9568.2003.02612.x
- 117Fiske, E, Gronli, J, Bjorvatn, B, Ursin, R and Portas, CM. The effect of GABA (A) antagonist bicuculline on dorsal raphe nucleus and frontal cortex extracellular serotonin: A window on SWS and REM sleep modulation. Pharmacology Biochemistry and Behavior. 2006; 2: 314–21. DOI: 10.1016/j.pbb.2006.02.014
- 118Fiske, E, Portas, CM, Gronli, J, Sorensen, E, Bjorvatn, B, Bjorkum, AA, et al. Increased extracellular 5-HT but no change in sleep after perfusion of a 5-HT1 A antagonist into the dorsal raphe nucleus of rats. Acta Physiologica. 2008; 1: 89–97. DOI: 10.1111/j.1748-1716.2007.01792.x
- 119Portas, CM and McCarley, RW. Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: A microdialysis study in the freely moving cat. Brain Research. 1994; 2: 306–12. DOI: 10.1016/0006-8993(94)91132-0
- 120Portas, CM, Thakkar, M, Rainnie, D and McCarley, RW. Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. Journal of Neuroscience. 1996; 8: 2820–8. DOI: 10.1523/JNEUROSCI.16-08-02820.1996
- 121Portas, CM, Bjorvatn, B, Fagerland, S, GrOnli, J, Mundal, V, Sørensen, E, Ursin, R, et al. On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience. 1998; 3: 807–14. DOI: 10.1016/S0306-4522(97)00438-7
- 122Mukaida, K, Shichino, T, Koyanagi, S, Himukashi, S and Fukuda, K. Activity of the serotonergic system during isoflurane anesthesia. Anesthesia and Analgesia. 2007; 4: 836–9. DOI: 10.1213/01.ane.0000255200.42574.22
- 123McCarley, RW. Mechanisms and models of REM sleep control. Archives Italiennes de Biologie. 2004; 4: 429–67.
- 124Strecker, RE, Thakkar, MM, Porkka-Heiskanen, T, Dauphin, LJ, Bjorkum, AA and McCarley, RW. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals. Sleep research online: SRO. 1999; 2: 21–7.
- 125Lapierre, JL, Kosenko, P, Kodama, T, Peever, J, Mukhametov, L, Lyamin, O, et al. Unlike acetylcholine, cortical serotonin release is not lateralized during asymmetrical slow wave sleep in the fur seal. Sleep. 2012; A26.
- 126Lapierre, JL, Kosenko, PO, Kodama, T, Peever, JH, Mukhametov, LM, Lyamin, OI, et al. Symmetrical serotonin release during asymmetrical slow-wave sleep: Implications for the neurochemistry of sleep-waking states. Journal of Neuroscience. 2013; 6: 2555–61. DOI: 10.1523/JNEUROSCI.2603-12.2013
- 127Lyamin, OI, Lapierre, JL, Kosenko, PO, Kodama, T, Bhagwandin, A, Korneva, SM, et al. Monoamine release during unihemispheric sleep and unihemispheric waking in the fur seal. Sleep. 2016; 3: 625–36. DOI: 10.5665/sleep.5540
- 128Blanco-Centurion, CA and Salin-Pascual, RJ. Extracellular serotonin levels in the medullary reticular formation during normal sleep and after REM sleep deprivation. Brain Research. 2001; 1–2: 128–36. DOI: 10.1016/S0006-8993(01)03209-7
- 129Iwakiri, H. Extracellular levels of serotonin in the medial pontine reticular formation in relation to sleep-wake cycle in cats: A microdialysis study. Neuroscience Research. 1993; 2: 157–70. DOI: 10.1016/0168-0102(93)90018-L
- 130Shouse, MN, Farber, PR and Staba, RJ. Physiological basis: How NREM sleep components can promote and REM sleep components can suppress seizure discharge propagation. Clinical Neurophysiology. 2000; SUPPL. 2: S9–S18. DOI: 10.1016/S1388-2457(00)00397-7
- 131Park, SP. In vivo microdialysis measures of extracellular norepinephrine in the rat amygdala during sleep-wakefulness. Journal of Korean medical science. 2002; 3: 395–9. DOI: 10.3346/jkms.2002.17.3.395
- 132Lapierre, JL, Kosenko, P, Korneva, SM, Kodama, T, Peever, J, Mukhametov, L, et al. Cortical norepinephrine release is not lateralized during asymmetrical slow-wave sleep in the fur seal. Sleep. 2013; A59.
- 133Lopez-Rodriguez, F, Wilson, C, Maidment, N, Poland, R, Chase, MH and Engel, J,
Jr. Extracellular serotonin in the rat hippocampus during REM sleep deprivation. Sleep Research Online. 2003; 3: 115–22. - 134Murillo-Rodriguez, E, Machado, S, Rocha, NB, Budde, H, Yuan, TF and Arias-Carrion, O. Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neuroscience. 2016; 433–49. DOI: 10.1016/j.neuroscience.2016.10.011
- 135Zant, JC, Rozov, S, Kostin, A, Panula, P and Porkka-Heiskanen, T. Dynamic changes in neurotransmitter levels in the basal forebrain during and after sleep deprivation. Journal of Sleep Research. 2010; 191.
- 136Zant, JC, Leenaars, CHC, Kostin, A, Van Someren, EJW and Porkka-Heiskanen, T. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Research. 2011; 40–8. DOI: 10.1016/j.brainres.2011.05.008
- 137Van der Mierden, S, Savelyev, SA, IntHout, J, De Vries, RBM and Leenaars, CHC. Intracerebral microdialysis of adenosine and AMP – a systematic review and meta-regression analysis (Submitted).
- 138Kodama, T, Mallick, BN, Pandi-Perumal, SR, McCarley, RW and Morrison, AR.
REM sleep: regulation and function . 2011; 266–79. Chapter 27. Cambridge University Press. - 139Saper, CB and Fuller, PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol. 2017; 44: 186–92. DOI: 10.1016/j.conb.2017.03.021
- 140Abbott, SM, Arnold, JM, Chang, Q, Miao, H, Ota, N, Cecala, C, et al. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock. PLoS One. 2013; 8(8):
e70481 . DOI: 10.1371/journal.pone.0070481 - 141Yamakawa, GR, Basu, P, Cortese, F, MacDonnell, J, Whalley, D, Smith, VM, et al. The cholinergic forebrain arousal system acts directly on the circadian pacemaker. Proc Natl Acad Sci U S A. 2016; 113(47): 13498–503. DOI: 10.1073/pnas.1610342113
- 142Wirz-Justice, A, Tobler, I, Kafka, MS, Naber, D, Marangos, PJ, Borbely, AA, et al. Sleep deprivation: effects on circadian rhythms of rat brain neurotransmitter receptors. Psychiatry Res. 1981; 5(1): 67–76. DOI: 10.1016/0165-1781(81)90062-7
- 143Madrid-Lopez, N, Estrada, J, Diaz, J, Bassi, A, Delano, PH and Ocampo-Garces, A. The Sleep-Wake Cycle in the Nicotinic Alpha-9 Acetylcholine Receptor Subunit Knock-Out Mice. Front Cell Neurosci. 2017; 11: 302. DOI: 10.3389/fncel.2017.00302
- 144Scammell, TE, Arrigoni, E and Lipton, JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017; 93(4): 747–65. DOI: 10.1016/j.neuron.2017.01.014
- 145Bailey, M and Silver, R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol. 2014; 35(1): 111–39. DOI: 10.1016/j.yfrne.2013.11.003
- 146Krizo, JA and Mintz, EM. Sex differences in behavioral circadian rhythms in laboratory rodents. Front Endocrinol (Lausanne). 2014; 5: 234.
- 147Brewerton, TD, Putnam, KT, Lewine, RRJ and Risch, SC. Seasonality of cerebrospinal fluid monoamine metabolite concentrations and their associations with meteorological variables in humans. J Psychiatr Res. 2018; 99: 76–82. DOI: 10.1016/j.jpsychires.2018.01.004
- 148Basheer, R, Magner, M, McCarley, RW and Shiromani, PJ. REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Mol Brain Res. 1998; 57: 235–40. DOI: 10.1016/S0169-328X(98)00088-6
- 149Majumdar, S and Majumdar, BN. Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats. Neuroscience Letters. 2003; 338: 193–6. DOI: 10.1016/S0304-3940(02)01404-0
- 150Perez, NM, Mattei, R and Benedito, MAC. Decreased activity of striatal monoamine oxidase B after rapid eye movement (REM) sleep deprivation in rats. Pharmacol Biochem Behav. 1998; 60(1): 33–7. DOI: 10.1016/S0091-3057(97)00556-X
- 151Medvedev, A. Tribulin and endogenous MAO-inhibitory regulation in vivo. NeuroToxicology. 2004; 25(1–2): 185–92. DOI: 10.1016/S0161-813X(03)00098-6
- 152Perez, NM and Benedito, MAC. Activities of monoamine oxidase (MAO) A and B in discrete regions of rat brain after rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav. 1997; 58(2): 605–8. DOI: 10.1016/S0091-3057(97)10002-8
- 153Thakkar, M and Mallick, BN. Effect Of rapid eye movement sleep deprivation on rat brain monoamine oxidases. Neuroscience. 1993; 55(3): 677–83. DOI: 10.1016/0306-4522(93)90433-G
- 154Wang, Z, Chen, L, Zhang, L and Wang, X. Paradoxical sleep deprivation modulates depressive-like behaviors by regulating the MAOA levels in the amygdala and hippocampus. Brain Res. 2017; 1664: 17–24. DOI: 10.1016/j.brainres.2017.03.022
- 155Azizi, H, Hwang, J, Suen, V, Kang, NZ, Somvanshi, R, Tadavarty, R, et al. Sleep deprivation induces changes in 5-HT actions and 5-HT1A receptor expression in the rat hippocampus. Neurosci Lett. 2017; 655: 151–5. DOI: 10.1016/j.neulet.2017.06.053
- 156Hipolide, DC, Moreira, KM, Barlow, KB, Wilson, AA, Nobrega, JN and Tufik, S. Distinct effects of sleep deprivation on binding to norepinephrine and serotonin transporters in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29(2): 297–303. DOI: 10.1016/j.pnpbp.2004.11.015
- 157Hamdi, A, Brock, J, Ross, K and Prasad, C. Effects of rapid eye movement sleep deprivation on the properties of striatal dopaminergic system. Pharmacol Biochem Behav. 1993; 46: 863–6. DOI: 10.1016/0091-3057(93)90214-E
- 158Borah, R, Brown, AW, Capers, PL and Kaiser, KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open. 2017; 7(2):
e012545 . DOI: 10.1136/bmjopen-2016-012545 - 159Mehta, R, Khan, S and Mallick, BN. Relevance of deprivation studies in understanding rapid eye movement sleep. Nat Sci Sleep. 2018; 10: 143–58. DOI: 10.2147/NSS.S140621
- 160Villafuerte, G, Miguel-Puga, A, Rodriguez, EM, Machado, S, Manjarrez, E and Arias-Carrion, O. Sleep deprivation and oxidative stress in animal models: a systematic review. Oxid Med Cell Longev. 2015; 2015. DOI: 10.1155/2015/234952
- 161Suchecki, D, Lobo, LL, Hipolide, DC and Tufik, S. Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. Journal of Sleep Research. 1998; 7: 276–81. DOI: 10.1046/j.1365-2869.1998.00122.x
- 162Coenen, AML and Van Luijtelaar, ELJM. Stress induced by three procedures of deprivation of paradoxical sleep. Physiol Behav. 1985; 35: 501–4. DOI: 10.1016/0031-9384(85)90130-1
- 163de Lange, ECM. Recovery and Calibration Techniques. Toward Quantitative Microdialysis. 2013; 4: 13–33.
- 164Tonin, FS, Rotta, I, Mendes, AM and Pontarolo, R. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons. Pharm Pract (Granada). 2017; 15(1): 943. DOI: 10.18549/PharmPract.2017.01.943
- 165Milstein, JA, Lehmann, O, Theobald, DE, Dalley, JW and Robbins, TW. Selective depletion of cortical noradrenaline by anti-dopamine beta-hydroxylase-saporin impairs attentional function and enhances the effects of guanfacine in the rat. Psychopharmacology (Berl). 2007; 190(1): 51–63. DOI: 10.1007/s00213-006-0594-x
- 166Robbins, TW. Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res. 2000; 133(1): 130–8. DOI: 10.1007/s002210000407
- 167Thomas, M, Sing, H, Belenky, G, Holcomb, H, Mayberg, H, Dannals, R, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000; 9(4): 335–52. DOI: 10.1046/j.1365-2869.2000.00225.x
- 168Muzur, A, Pace-Schott, EF and Hobson, JA. The prefrontal cortex in sleep. Trends Cogn Sci. 2002; 6(11): 475–81. DOI: 10.1016/S1364-6613(02)01992-7
