References
- 1Cooper, JR, Bloom, FE and Roth, RH. The biochemical basis of neuropharmacology. New York: Oxford University Press; 2003.
- 2Feldman, RS, Meyer, JS and Quenzer, LF. Principles of neuropsychopharmacology. Sunderland: Sinauer Associates, Inc., Publishes; 1997.
- 3Monti, JM, Pandi-Perumal, SR and Sinton, CM. Neurochemistry of sleep and wakefulness. Cambridge: Cambridge University Press; 2008. DOI: 10.1017/CBO9780511541674
- 4Clark, I and Landolt, HP. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep Med Rev. 2017; 31: 70–78. DOI: 10.1016/j.smrv.2016.01.006
- 5McLellan, TM, Caldwell, JA and Lieberman, HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016; 71: 294–312. DOI: 10.1016/j.neubiorev.2016.09.001
- 6Brown, RE, Basheer, R, McKenna, JT, Strecker, RE and McCarley, RW. Control of sleep and wakefulness. Physiol Rev. 2012; 92: 1087–1187. DOI: 10.1152/physrev.00032.2011
- 7Zeitzer, JM, Morales-Villagran, A, Maidment, NT, Behnke, EJ, Ackerson, LC, Lopez-Rodriguez, F, Fried, I, Engel, J and Wilson, CL,
Jr. Extracellular adenosine in the human brain during sleep and sleep deprivation: An in vivo microdialysis study. Sleep. 2006; 29: 455–461. DOI: 10.1093/sleep/29.4.455 - 8Xu, M, Chung, S, Zhang, S, Zhong, P, Ma, C, Chang, WC, Weissbourd, B, Sakai, N, Luo, L, Nishino, S and Dan, Y. Basal forebrain circuit for sleep-wake control. Nat Neurosci. 2015; 18: 1641–1647. DOI: 10.1038/nn.4143
- 9Szymusiak, R. Magnocellular nuclei of the basal forebrain: Substrates of sleep and arousal regulation. Sleep. 1995; 18: 478–500. DOI: 10.1093/sleep/18.6.478
- 10Porkka-Heiskanen, T, Strecker, RE, Thakkar, M, Bjorkum, AA, Greene, RW and McCarley, RW. Adenosine: A mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997; 276: 1265–1267. DOI: 10.1126/science.276.5316.1265
- 11McCarley, RW. Neurobiology of REM and NREM sleep. Sleep Med. 2007; 8: 302–330. DOI: 10.1016/j.sleep.2007.03.005
- 12Schwartz, JR and Roth, T. Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Curr Neuropharmacol. 2008; 6: 367–378. DOI: 10.2174/157015908787386050
- 13Basheer, R, Porkka-Heiskanen, T, Stenberg, D and McCarley, RW. Adenosine and behavioral state control: Adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Mol Brain Res. 1999; 73: 1–10. DOI: 10.1016/S0169-328X(99)00219-3
- 14Blanco-Centurion, C, Xu, M, Murillo-Rodriguez, E, Gerashchenko, D, Shiromani, AM, Salin-Pascual, RJ, Hof, PR and Shiromani, PJ. Adenosine and sleep homeostasis in the basal forebrain. J Neurosci. 2006; 26: 8092–8100. DOI: 10.1523/JNEUROSCI.2181-06.2006
- 15McKenna, JT, Tartar, JL, Ward, CP, Thakkar, MM, Cordeira, JW, McCarley, RW, Strecker, RE. Sleep fragmentation elevates behavioral, electrographic and neurochemical measures of sleepiness. Neuroscience. 2007; 146: 1462–1473. DOI: 10.1016/j.neuroscience.2007.03.009
- 16Murillo-Rodriguez, E, Liu, M, Blanco-Centurion, C and Shiromani, PJ. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci. 2008; 28: 1191–1198. DOI: 10.1111/j.1460-9568.2008.06424.x
- 17Wigren, HK, Schepens, M, Matto, V, Stenberg, D and Porkka-Heiskanen, T. Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience. 2007; 147: 811–823. DOI: 10.1016/j.neuroscience.2007.04.046
- 18Muzur, A, Pace-Schott, EF and Hobson, JA. The prefrontal cortex in sleep. Trends Cogn Sci. 2002; 6: 475–481. DOI: 10.1016/S1364-6613(02)01992-7
- 19Hobson, JA and Pace-Schott, EF. The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nat Rev Neurosci. 2002; 3: 679–693. DOI: 10.1038/nrn915
- 20Thomas, M, Sing, H, Belenky, G, Holcomb, H, Mayberg, H, Dannals, R, Wagner, H, Thorne, D, Popp, K, Rowland, L, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000; 9: 335–352. DOI: 10.1046/j.1365-2869.2000.00225.x
- 21Mander, BA, Rao, V, Lu, B, Saletin, JM, Lindquist, JR, Ancoli-Israel, S, Jagust, W and Walker, MP. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013; 16: 357–364. DOI: 10.1038/nn.3324
- 22Leenaars, CH, Joosten, RN, Zwart, A, Sandberg, H, Ruimschotel, E, Hanegraaf, MA, Dematteis, M, Feenstra, MG and van Someren, EJ. Switch-task performance in rats is disturbed by 12 h of sleep deprivation but not by 12 h of sleep fragmentation. Sleep. 2012; 35: 211–221. DOI: 10.5665/sleep.1624
- 23Reichert, CF, Maire, M, Schmidt, C and Cajochen, C. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine. Biology (Basel). 2016; 5. DOI: 10.3390/biology5010011
- 24Elmenhorst, D, Meyer, PT, Winz, OH, Matusch, A, Ermert, J, Coenen, HH, Basheer, R, Haas, HL, Zilles, K and Bauer, A. Sleep deprivation increases A1 adenosine receptor binding in the human brain: A positron emission tomography study. J Neurosci. 2007; 27: 2410–2415. DOI: 10.1523/JNEUROSCI.5066-06.2007
- 25van Aerde, KI, Qi, G and Feldmeyer, D. Cell type-specific effects of adenosine on cortical neurons. Cereb Cortex. 2015; 25: 772–787. DOI: 10.1093/cercor/bht274
- 26Porkka-Heiskanen, T, Strecker, RE and McCarley, RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: An in vivo microdialysis study. Neuroscience. 2000; 99: 507–517. DOI: 10.1016/S0306-4522(00)00220-7
- 27Kalinchuk, AV, McCarley, RW, Porkka-Heiskanen, T and Basheer, R. The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem. 2011; 116: 260–272. DOI: 10.1111/j.1471-4159.2010.07100.x
- 28Van der Mierden, S, Savelyev, SA, IntHout, J, De Vries, RBM and Leenaars, CH. Intracerebral microdialysis of adenosine and AMP – a systematic review and meta-regression analysis. J Neurochem; 2018. [Epub ahead of print]. DOI: 10.1111/jnc.14552
- 29Leenaars, CH, Dematteis, M, Joosten, RN, Eggels, L, Sandberg, H, Schirris, M, Feenstra, MG and Van Someren, EJ. A new automated method for rat sleep deprivation with minimal confounding effects on corticosterone and locomotor activity. J Neurosci Methods. 2011; 196: 107–117. DOI: 10.1016/j.jneumeth.2011.01.014
- 30Feenstra, MG and Botterblom, MH. Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty. Brain Res. 1996; 742: 17–24. DOI: 10.1016/S0006-8993(96)00945-6
- 31Matuszewski, BK and Bayne, WF. Fluorogenic reaction between adenine derivatives and chloroacetaldehyde and its application to the determination of 9-(2-chloro-6-fluorobenzyl)adenine in human plasma. Analytica Chimica Acta. 1989; 227: 189–202. DOI: 10.1016/S0003-2670(00)82658-6
- 32R_Core_Team.
R: A language and environment for statistical computing . R Foundation for Statistical Computing, Vienna, Austria. URL:https://www.R-project.org/ Accessed [29-10-2016]; 2016. - 33Schwarzer, G, Carpenter, JR and Rücker, G. Meta-Analysis with R. Switzerland: Springer international publishing; 2015.
- 34Hooijmans, CR, Rovers, MM, de Vries, RB, Leenaars, M, Ritskes-Hoitinga, M and Langendam, MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14: 43. DOI: 10.1186/1471-2288-14-43
- 35Pires, GN, Bezerra, AG, Tufik, S and Andersen, ML. Effects of experimental sleep deprivation on anxiety-like behavior in animal research: Systematic review and meta-analysis. Neurosci Biobehav Rev. 2016; 68: 575–589. DOI: 10.1016/j.neubiorev.2016.06.028
- 36Sharma, R, Engemann, S, Sahota, P and Thakkar, MM. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence. J Neurochem. 2010b; 115: 782–794. DOI: 10.1111/j.1471-4159.2010.06980.x
- 37Vazquez-DeRose, J, Schwartz, MD, Nguyen, AT, Warrier, DR, Gulati, S, Mathew, TK, Neylan, TC and Kilduff, TS. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct; 2014.
- 38Feenstra, MG, Botterblom, MH and Mastenbroek, S. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: Effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience. 2000; 100: 741–748. DOI: 10.1016/S0306-4522(00)00319-5
- 39Basheer, R, Porkka-Heiskanen, T, Strecker, RE, Thakkar, MM and McCarley, RW. Adenosine as a biological signal mediating sleepiness following prolonged wakefulness. Biol Signals Receptors. 2000; 9: 319–327. DOI: 10.1159/000014655
- 40Savelyev, SA, Rantamaki, T, Rytkonen, KM, Castren, E and Porkka-Heiskanen, T. Sleep homeostasis and depression: Studies with the rat clomipramine model of depression. Neuroscience. 2012; 212: 149–158. DOI: 10.1016/j.neuroscience.2012.03.029
- 41Basheer, R, Halldner, L, Alanko, L, McCarley, RW, Fredholm, BB and Porkka-Heiskanen, T. Opposite changes in adenosine A(1) and A(2A) receptor mRNA in the rat following sleep deprivation. Neuroreport. 2001; 12: 1577–1580. DOI: 10.1097/00001756-200106130-00013
- 42Taber, KH and Hurley, RA. Functional neuroanatomy of sleep and sleep deprivation. J Neuropsychiatry Clin Neurosci. 2006; 18: 1–5. DOI: 10.1176/jnp.18.1.1
- 43Strecker, RE, Morairty, S, Thakkar, MM, Porkka-Heiskanen, T, Basheer, R, Dauphin, LJ, Rainnie, DG, Portas, CM, Greene, RW and McCarley, RW. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res. 2000; 115: 183–204. DOI: 10.1016/S0166-4328(00)00258-8
- 44Chamberlin, NL, Arrigoni, E, Chou, TC, Scammell, TE, Greene, RW and Saper, CB. Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003; 119: 913–918. DOI: 10.1016/S0306-4522(03)00246-X
- 45Heinrich, A, Ando, RD, Turi, G, Rozsa, B and Sperlagh, B. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: A microelectrode biosensor study. Br J Pharmacol. 2012; 167: 1003–1020. DOI: 10.1111/j.1476-5381.2012.01932.x
- 46Greene, RW, Bjorness, TE and Suzuki, A. The adenosine-mediated, neuronal-glial, homeostatic sleep response. Curr Opin Neurobiol. 2017; 44: 236–242. DOI: 10.1016/j.conb.2017.05.015
- 47Hascup, ER, af Bjerken, S, Hascup, KN, Pomerleau, F, Huettl, P, Stromberg, I and Gerhardt, GA. Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res. 2009; 1291: 12–20. DOI: 10.1016/j.brainres.2009.06.084
- 48Halassa, MM, Florian, C, Fellin, T, Munoz, JR, Lee, SY, Abel, T, Haydon, PG and Frank, MG. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron. 2009; 61: 213–219. DOI: 10.1016/j.neuron.2008.11.024
- 49Ahnaou, A, van Hemelrijck, A, Straetemans, R, Geys, H, Vanhoof, G, Meert, TF and Drinkenburg, WH. Effects of phosphodiesterase 10 inhibition on striatal cyclic amp and peripheral physiology in rats. Acta Neurobiol Exp. 2010; 70: 13–19.
- 50Cadogan, AK, Kendall, DA and Marsden, CA. Serotonin 5-HT(1A) receptor activation increases cyclic AMP formation in the rat hippocampus in vivo. J Neurochem. 1994; 62: 1816–1821. DOI: 10.1046/j.1471-4159.1994.62051816.x
