References
-
1
Aschoff J Exogenous and endogenous components in circadian rhythms Cold Spring Harb Symp Quant Biol 1960 25 11 28 10.1101/SQB.1960.025.01.004
-
2
Pittendrigh CS Circadian rhythms and the circadian organization of living systems Cold Spring Harb Symp Quant Biol 1960 25 159 84 10.1101/SQB.1960.025.01.015
-
3
Hut RA Beersma DGM Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc LondonSeries B Biol Sci 2011 366 1574 2141 54 10.1098/rstb.2010.0409
-
4
Menaker M Murphy ZC Sellix MT Central control of peripheral circadian oscillators Curr Opin Neurobiol 2013 23 5 741 6 10.1016/j.conb.2013.03.003
-
5
Meijer JH Schwartz WJ In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus J Biol Rhythms 2003 18 3 235 49 10.1177/0748730403018003006
-
6
Moore RY Circadian Rhythms: Basic Neurobiology and Clinical Applications Annu Rev Med 1997 48 253 66 10.1146/annurev.med.48.1.253
-
7
Pittendrigh CS Daan S A functional analysis of circadian pacemakers in nocturnal rodents J. Comp. Physiol. A 1976 106 3 333 55 10.1007/BF01417860
-
8
Morin LP Allen CN The circadian visual system, 2005 Brain Research Reviews 2006 51 1 60 10.1016/j.brainresrev.2005.08.003
-
9
Inyushkin AN Bhumbra GS Dyball REJ Leptin modulates spike coding in the rat suprachiasmatic nucleus J Neuroendocrinol 2009 21 8 705 14 10.1111/j.1365-2826.2009.01889.x
-
10
Mendoza J Lopez-Lopez C Revel FG Jeanneau K Delerue F Prinssen E Dimorphic effects of leptin on the circadian and hypocretinergic systems of mice J Neuroendocrinol 2011 23 1 28 38 10.1111/j.1365-2826.2010.02072.x
-
11
Prosser RA Bergeron HE Leptin phase-advances the rat suprachiasmatic circadian clock in vitro Neurosci Lett 2003 336 3 139 42 10.1016/S0304-3940(02)01234-X
-
12
Yannielli PC Molyneux PC Harrington ME Golombek DA Ghrelin effects on the circadian system of mice J Neurosci 2007 27 11 2890 5 10.1523/JNEUROSCI.3913-06.2007
-
13
Challet E van Reeth O Turek FW Altered circadian responses to light in streptozotocin-induced diabetic mice Am J Physiol 1999 277 2 Pt 1 E232 7
-
14
Sage D Ganem J Guillaumond F Laforge-Anglade G François-Bellan A-M Bosler O Influence of the corticosterone rhythm on photic entrainment of locomotor activity in rats J Biol Rhythms 2004 19 2 144 56 10.1177/0748730403261894
-
15
Bray MS Young ME Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte Obesity Rev 2006 8 169 181 10.1111/j.1467-789X.2006.00277.x
-
16
Green CB Takahashi JS Bass J The Meter of Metabolism Cell 2008 134 728 42 10.1016/j.cell.2008.08.022
-
17
Bass J Takahashi JS Circadian integration of metabolism and energetics Science 2010 330 6009 1349 54 10.1126/science.1195027 (80)
-
18
Froy O Metabolism and circadian rhythms – Implications for obesity Endocr Rev 2010 31 1 1 24 10.1210/er.2009-0014
-
19
Baron KG Reid KJ Circadian misalignment and health Int Rev Psychiatry 2014 26 2 139 54 10.3109/09540261.2014.911149
-
20
Golombek DA Casiraghi LP Agostino PV Paladino N Duhart JM Plano SA The times they’re a-changing: Effects of circadian desynchronization on physiology and disease J Physiol. Paris 2013 107 4 310 22 10.1016/j.jphysparis.2013.03.007
-
21
Berthoud H-R Berthoud H-R Morrison C Morrison C The brain, appetite, and obesity Annu Rev Psychol 2008 59 55 92 10.1146/annurev.psych.59.103006.093551
-
22
Ginsberg HN Maccallum PR The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus J Cardiometab Syndr 2009 4 2 113 9 10.1111/j.1559-4572.2008.00044.x
-
23
Mendoza J Pévet P Challet E High-fat feeding alters the clock synchronization to light J Physiol 2008 586 Pt24 5901 10 10.1113/jphysiol.2008.159566
-
24
Kohsaka A Laposky AD Ramsey KM Estrada C Joshu C Kobayashi Y High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice Cell Metab 2007 6 5 414 21 10.1016/j.cmet.2007.09.006
-
25
Hsieh MC Yang SC Tseng HL Hwang LL Chen CT Shieh KR Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice Int J Obes (Lond) 2010 34 2 227 39 10.1038/ijo.2009.228
-
26
Sans-Fuentes MA Díez-Noguera A Cambras T Light responses of the circadian system in leptin-deficient mice Physiol Behav 2010 99 4 487 94 10.1016/j.physbeh.2009.12.023
-
27
Murakami DM Horwitz BA Fuller CA Circadian rhythms of temperature and activity in obese and lean Zucker rats Am J Physiol 1995 269 5 Pt 2 R1038 43
-
28
Turek FW Joshu C Kohsaka A Lin E Ivanova G Mcdearmon E Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice 2005 May 308 1043 5
-
29
Vitaterna MH King DP Chang AM Kornhauser JM Lowrey PL McDonald JD Dove WF Pinto LH Turek FW Takahashi JS Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior Science 1994 Apr 29 264 5159 719 725 10.1126/science.8171325
-
30
Grosbellet E Dumont S Schuster-Klein C Guardiola-Lemaitre B Pevet P Criscuolo F Circadian phenotyping of obese and diabetic db/db mice Biochimie 2016 124 198 206 10.1016/j.biochi.2015.06.029
-
31
Golombek DA Rosenstein RE Physiology of Circadian Entrainment Physiol Rev 2010 90 3 1063 102 10.1152/physrev.00009.2009
-
32
Kawaguchi C Tanaka K Isojima Y Shintani N Hashimoto H Baba A Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP Biochem Biophys Res Commun 2003 310 1 169 75 10.1016/j.bbrc.2003.09.004
-
33
Hughes TL Piggins HD Behavioral responses of Vipr2-/- mice to light J Biol Rhythms 2008 23 3 211 9 10.1177/0748730408316290
-
34
Piggins HD Cutler DJ The roles of vasoactive intestinal polypeptide in the mammalian circadian clock J Endocrinol 2003 177 1 7 15 10.1677/joe.0.1770007
-
35
Aton SJ Colwell CS Harmar AJ Waschek J Herzog ED Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons Nat Neurosci 2005 8 4 476 83 10.1038/nn1419
-
36
Arble DM Ramsey KM Bass J Turek FW Circadian disruption and metabolic disease: Findings from animal models Best Pract Res Clin Endocrinol Metab 2010 24 5 785 800 10.1016/j.beem.2010.08.003
-
37
Fonken LK Nelson RJ The effects of light at night on circadian clocks and metabolism Endocr Rev 2014 35 4 648 70 10.1210/er.2013-1051
-
38
Kennedy AJ Ellacott KLJ King VL Hasty AH Mouse models of the metabolic syndrome Dis Model Mech 2010 3 156 66 10.1242/dmm.003467
-
39
Fuentes-Granados C Duran P Carmona-Castro A Cárdenas-Vázquez R Miranda-Anaya M Obesity alters the daily sleep homeostasis and metabolism of the volcano mouse Neotomodon alstoni Biol Rhythm Res 2012 43 1 39 47 10.1080/09291016.2011.638135
-
40
Carmona-Alcocer V Fuentes-Granados C Carmona-Castro A Aguilar-González I Cárdenas-Vázquez R Miranda-Anaya M Obesity alters circadian behavior and metabolism in sex-dependent manner in the volcano mouse Neotomodon alstoni Physiol Behav 2012 105 3 727 33 10.1016/j.physbeh.2011.09.022
-
41
Fuentes-Granados C Miranda-Anaya M Samario-Román J Moreno-Sáenz E Carmona-Castro A Cárdenas-Vázquez RJ Circadian locomotor activity and response to different light conditions in the Volcano mouse, Neotomodon alstoni (Merriam, 1898) Biol Rhythm Res 2010 41 4 269 78 10.1080/09291010902863420
-
42
Báez-Ruiz A Luna-Moreno D Carmona-Castro A Cárdenas-Vázquez R Díaz-Muñoz M Carmona-Alcocer V Fuentes-Granados C Manuel MA Hypothalamic expression of anorexigenic and orexigenic hormone receptors in obese females Neotomodon alstoni: effect of fasting Nutr Neurosci 2014 17 1 31 6 10.1179/1476830513Y.0000000063
-
43
Miranda-Anaya M Carmona-Alcocer V Carmona-Castro A Effects of obesity on circadian photic entrainment of locomotor activity in wild mice Neotomodon alstoni Biol Rhythm Res 2016 47 4 529 537 10.1080/09291016.2016.1158906
-
44
Zuther SGB No Title [Internet] 2009 Available from:
http://www.ma.uni-heidelberg.de/inst/phar/lehre/chrono.html -
45
Iwahana E Karatsoreos I Shibata S Silver R Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice Horm Behav 2008 53 3 422 30 10.1016/j.yhbeh.2007.11.014
-
46
Edgar DM Dement WC Regularly scheduled voluntary exercise synchronizes the mouse circadian clock Am J Physiol 1991 261 4 Pt 2 R928 33
-
47
Mistlberger R Holmes M Behavioral feedback regulation of circadian rhythm phase angle in light-dark entrained mice Am J Physiol Regul Integr Comp Physiol 2000 279 R813 21
-
48
Brown L Panchal SK Rodent models for metabolic syndrome research J Biomed Biotechnol 2011 2011
-
49
Lutz TA Woods SC
Overview of Animal Models of Obesity. UNIT 5.61 Current Protocols in Pharmacology Current Protocols in Pharmacology 2012 Wiley Online Library 5.61.1 5.61.18 -
50
Guido ME Goguen D De Guido L Robertson HA Rusak B Circadian and photic regulation of immediate-early gene expression in the hamster suprachiasmatic nucleus Neuroscience 1999 90 2 555 71 10.1016/S0306-4522(98)00467-9
-
51
Beaulé C Amir S Photic entrainment, and induction of immediate-early genes within the rat circadian system Brain Res 1999 821 1 95 100 10.1016/S0006-8993(99)01073-2
-
52
Beaule C Arvanitogiannis A Amir S Light suppresses Fos expression in the shell region of the suprachiasmatic nucleus at dusk and dawn: implications for photic entrainment of circadian rhythms Neuroscience 2001 106 2 249 54 10.1016/S0306-4522(01)00313-X
-
53
Takahashi Y Okamura H Yanaihara N Hamada S Fujita S Ibata Y Vasoactive intestinal peptide immunoreactive neurons in the rat suprachiasmatic nucleus demonstrate diurnal variation Brain Res 1989 497 2 374 7 10.1016/0006-8993(89)90283-7
-
54
Shinohara K Honma S Katsuno Y Abe H Honma K Circadian rhythms in the release of vasoactive intestinal polypeptide and arginine-vasopressin in organotypic slice culture of rat suprachiasmatic nucleus Neurosci Lett 1994 170 1 183 6 10.1016/0304-3940(94)90269-0
-
55
Ban Y Shigeyoshi Y Okamura H Development of vasoactive intestinal peptide mRNA rhythm in the rat suprachiasmatic nucleus J Neurosci 1997 17 10 3920 31
-
56
Reed HE Meyer-Spasche A Cutler DJ Coen CW Piggins HD Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro Eur J Neurosci 2001 13 4 839 43 10.1046/j.0953-816x.2000.01437.x
-
57
Dragich JM Loh DH Wang LM Vosko AM Kudo T Nakamura TJ The role of the neuropeptides PACAP and VIP in the photic regulation of gene expression in the suprachiasmatic nucleus Eur J Neurosci 2010 31 5 864 75 10.1111/j.1460-9568.2010.07119.x
-
58
Maywood ES Reddy AB Wong GKY O’Neill JS O’Brien JA McMahon DG Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling Curr Biol 2006 16 6 599 605 10.1016/j.cub.2006.02.023
-
59
Rossmeisl M Rim JS Koza RA Kozak LP Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity Diabetes 2003 52 8 1958 66 10.2337/diabetes.52.8.1958
-
60
Surwit RS Feinglos MN Rodin J Sutherland A Petro AE Opara EC Differential effects of fat and sucrose on body composition in C57BL/6 and A/J mice Metabolism 1998 47 11 1354 9 10.1016/S0026-0495(98)90304-3
-
61
Prpic V Watson PM Frampton IC Sabol MA Jezek GE Gettys TW Adaptive changes in adipocyte gene expression differ in AKR/J and SWR/J mice during diet-induced obesity J Nutr 2002 132 August 3325 32
