Have a personal or library account? Click to login
A Model-Based Statistical Classification Analysis for Karamattepe Arrowheads Cover

A Model-Based Statistical Classification Analysis for Karamattepe Arrowheads

Open Access
|Mar 2019

References

  1. 1Acquah, HD-G. 2013. Bayesian logistic regression modelling via Markov Chain Monte Carlo Algorithm. Journal of Social and Development Sciences, 4(4): 193197.
  2. 2Agresti, A. 2002. Categorical data analysis. New York: Wiley Interscience. DOI: 10.1002/0471249688
  3. 3Baykan, D. 2012. Nif (Olympos) Dağı kazısı metal buluntularının tipolojik ve analojik değerlendirmesi. In: Dönmez, H and Keskin, Ç (eds.), 27. Arkeometri Sonuçları Toplantısı, 23–28 May 2011, 154: 231246. Malatya: Kültür Varlıkları ve Müzeler Genel Müdürlüğü Yayın.
  4. 4Baykan, D. 2015. Metal finds from Nif-Olympus. In: Laflı, E and Patacı, S (eds.), Recent studies on the archaeology of Anatolia, 4148. Oxford: Archaeopress.
  5. 5Brand, JPL, van Buuren, S, Groothuis-Oudshoorn, CGM and Gelsema, ES. 2003. A toolkit in SAS for the evaluation of multiple imputation methods. Statistica Neerlandica, 57(1): 3645. DOI: 10.1111/1467-9574.00219
  6. 6Demirtas, H, Freels, SA and Yucel, RM. 2008. Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78(1): 6984. DOI: 10.1080/10629360600903866
  7. 7Echegaray, JG. 1966 Excavaciones en la terraza de “El Khiam” (Jordania). Madrid: Bibliotheca Praehistorica Hispana.
  8. 8Enders, CK. 2003. Using the Expectation Maximization Algorithm to estimate coefficient alpha for scales with item-level missing data. Psychol Methods, 8(3): 32237. DOI: 10.1037/1082-989X.8.3.322
  9. 9Enders, CK. 2010. Applied missing data analysis. New York: The Guilford Press.
  10. 10Gelman, A, Carlin, JB, Stern, HS, Dunson, DB, Vehtari, A and Rubin, DB. 2014. Bayesian data analysis. Boca Raton: CRC Press.
  11. 11Gold, MS and Bentler, PM. 2000. Treatments of missing data: a Monte Carlo comparison of RBHDI, Iterative Stochastic Regression Imputation, and Expectation-Maximization. Structural Equation Modeling: A Multidisciplinary Journal, 7(3): 319355. DOI: 10.1207/S15328007SEM0703_1
  12. 12Horton, NJ and Lipsitz, SR. 2001. Multiple imputation in practice: comparison of software packages for regression models with missing variables. The American Statistician, 55(3): 244254. DOI: 10.1198/000313001317098266
  13. 13Hosmer, DW and Lemeshow, S. 2000. Applied logistic regression. New York: John Wiley & Sons. DOI: 10.1002/0471722146
  14. 14IBM. 2018. Multiple imputation. Available at: https://www.ibm.com/support/knowledgecenter/en/SSLVMB_24.0.0/spss/mva/syn_multiple_imputation.html [Last accessed 23 December 2018].
  15. 15Kuhfeld, WF, Tobias, RD and Garratt, M. 1994. Efficient experimental design with marketing research applications. Journal of Marketing Research, 31(4): 545557. DOI: 10.2307/3151882
  16. 16Le, CT. 1998. Applied categorical data analysis. New York: Wiley Interscience.
  17. 17Lee, KJ and Carlin, JB. 2010. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology, 171(5): 624632. DOI: 10.1093/aje/kwp425
  18. 18Little, R and Rubin, D. 2002. Statistical analysis with missing data. New Jersey: Wiley. DOI: 10.1002/9781119013563
  19. 19Molenberghs, G and Kenward, M. 2007. Missing Data in Clinical Studies. London: John Wiley & Sons. DOI: 10.1002/9780470510445
  20. 20Ni, D and Leonard II, JD. 2005. Markov Chain Monte Carlo multiple imputation using Bayesian networks for incomplete intelligent transportation systems data. Transportation Research Record, 1935(1): 5767. DOI: 10.1177/0361198105193500107
  21. 21O’Hara, RB, Arjas, E, Toivonen, H and Hanski, I. 2002. Bayesian analysis of metapopulation data. Ecology, 83(9): 24082415. DOI: 10.2307/3071802
  22. 22Raghunathan, TE, Lepkowski, JM, van Hoewyk, J and Solenberger, P. 2001. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27(1): 8595.
  23. 23Rubin, DB. 1987. Multiple imputation for nonresponse in surveys. New York: Wiley Classics. DOI: 10.1002/9780470316696
  24. 24Rubin, DB. 1991. EM and beyond. Psychometrica, 56: 241. DOI: 10.1007/BF02294461
  25. 25Shafer, JL. 1997. Analysis of Incomplete Multivariate Data. New York: Chapman & Hall/CRC. DOI: 10.1201/9781439821862
  26. 26Sneath, PHA. 1982. Classification and identification with incomplete data. In: Laflin, S (ed.), Computer Applications in Archaeology 1982. Conference Proceedings, 182187. Birmingham: Centre for Computing and Computer Science, University of Birmingham.
  27. 27Soley-Bori, M. 2013. Dealing with missing data: Key assumptions and methods for applied analysis. Boston: Boston University School of Public Health. Available at: https://www.bu.edu/sph/files/2014/05/Marina-tech-report.pdf [Last accessed 23 December 2018].
  28. 28Sullivan, E, Ferguson, S and Donndelinger, J. 2011. Exploring differences in preference heterogeneity representation and their influence in product family design. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5: 37th Design Automation Conference, 8192. Parts A and B, Washington, DC, USA, August 28–31, 2011. DOI: 10.1115/DETC2011-48596
  29. 29Sung, YJ and Geyer, CJ. 2007. Monte Carlo likelihood inference for missing data models. The Annals of Statistics, 35(3): 9901011. DOI: 10.1214/009053606000001389
  30. 30Tulunay, ET. 2006. Nif (Olympos) dağı araştırma projesi: 2004 yılı yüzey araştırması. AST, 23(2): 189200.
  31. 31van Buuren, S. 2007. Multiple of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16(3): 219242. DOI: 10.1177/0962280206074463
  32. 32van Buuren, S, Brand, JP, Groothuis-Oudshoorn, CG and Rubin, DB. 2006. Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76(12): 10491064. DOI: 10.1080/10629360600810434
  33. 33Wilks, SS. 1938. The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9: 6062. DOI: 10.1214/aoms/1177732360
  34. 34Yu, LM, Burton, A and Rivero-Arias, O. 2007. Evaluation of software for multiple of semi-continuous data. Statistical Methods in Medical Research, 16(3): 243258. DOI: 10.1177/0962280206074464
  35. 35Yuan, YC. 2010. Multiple imputation for missing data: Concepts and new development (Version 9.0). Rockville: SAS Institute Inc.
DOI: https://doi.org/10.5334/jcaa.20 | Journal eISSN: 2514-8362
Language: English
Submitted on: Nov 4, 2018
Accepted on: Jan 25, 2019
Published on: Mar 4, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Tutku Tuncali Yaman, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.