Have a personal or library account? Click to login
Archaeological Classification of Small Datasets Using Meta- and Transfer Learning Methods: A Case Study on Hittite Stele Fragments Cover

Archaeological Classification of Small Datasets Using Meta- and Transfer Learning Methods: A Case Study on Hittite Stele Fragments

Open Access
|Jan 2026

References

  1. Adams, WV and Adams, EW. 1991. Archaeological typology and practical reality: A dialectical approach to artifact classification and sorting. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511558207
  2. Alpaydin, E. 2021. Machine learning. Cambridge, MA: The MIT Press.
  3. Anwar, H, Anwar, S, Zambanini, S and Porikli, F. 2021. ‘Deep ancient Roman Republican coin classification via feature fusion and attention’. Pattern Recognition, 114: 107871. DOI: 10.1016/j.patcog.2021.107871
  4. Aslan, S, Vascon, S and Pelillo, M. 2020. ‘Two sides of the same coin: Improved ancient coin classification using Graph Transduction Games’. Pattern Recognition Letters, 131: 158165. DOI: 10.1016/j.patrec.2019.12.007
  5. Barceló, JA. 1995. ‘Back-propagation algorithms to compute similarity relationships among archaeological artefacts’. In: Wilcock, J and Lockyear, K (eds.) Computer Applications and Quantitative Methods in Archaeology: 1993. Oxford: Tempus Reparatum, pp. 165176.
  6. Barceló, JA. 2009. Computational Intelligence in Archaeology. Henshey, PA: The IGI Group. DOI: 10.4018/978-1-59904-489-7
  7. Barceló, JA and Bogdanovic, I. (eds.) 2015. Mathematics and archaeology. Boca Raton: CRC Press.
  8. Barceló, JA, Del Castillo, F, Kayikci, D and Urbistondo, B. 2022. ‘Neural networks for archaeological classification and typology: An overview’. Post-Classical Archaeologies, 12: 732.
  9. Barone, G, Mazzoleni, P, Spagnolo, GV and Raneri, S. 2019. ‘Artificial neural network for the provenance study of archaeological ceramics using clay sediment database’. Journal of Cultural Heritage, 38: 147157. DOI: 10.1016/j.culher.2019.02.004
  10. Belkin, M, Hsu, D, Ma, S and Mandal, S. 2019. ‘Reconciling modern machine-learning practice and the classical bias–variance trade-off’. Proceedings of the National Academy of Sciences, 116(32): 1584915854. DOI: 10.1073/pnas.1903070116
  11. Bellat, M, Orellana Figueroa, JD, Reeves, JS, Taghizadeh-Mehrjardi, R, Tennie, C and Scholten, T. 2025. ‘Machine learning applications in archaeological practices: a review’. Journal of Computing Applications in Archaeology, 8(1): 282321. DOI: 10.5334/jcaa.201
  12. Bengio, Y, Goodfellow, I and Courville, A. 2017. Deep learning (Vol. 1). Cambridge, MA: The MIT Press.
  13. Benhabiles, H and Tabia, H. 2016. ‘Convolutional neural network for pottery retrieval’. Journal of Electronic Imaging, 26(1): 011005. DOI: 10.1117/1.JEI.26.1.011005
  14. Berganzo-Besga, I, Orengo, HA, Lumbreras, F, Aliende, P and Ramsey, MN. 2022. ‘Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms’. Journal of Archaeological Science, 148: 105654. DOI: 10.1016/j.jas.2022.105654
  15. Berganzo-Besga, I, Orengo, HA, Lumbreras, F and Ramsey, MN. 2025. ‘Deep Learning Black-Box and Pattern Recognition Analysis Using Guided Grad-CAM for Phytolith Identification’. Annals of Botany, 136(2): 355366. DOI: 10.1093/aob/mcaf088
  16. Bickler, SH. 2021. ‘Machine learning arrives in archaeology’. Advances in Archaeological Practice, 9(2): 186191. DOI: 10.1017/aap.2021.6
  17. Bishop, CM. 2006. Pattern recognition and machine learning. New York: Springer.
  18. Brigato, L and Iocchi, L. 2021. ‘A close look at deep learning with small data’. In: 2020 25th international conference on pattern recognition (ICPR). IEEE, pp. 24902497. DOI: 10.1109/ICPR48806.2021.9412492
  19. Bryce, T. 2002. Life and society in the Hittite world. Oxford: Oxford University Press. DOI: 10.1093/oso/9780199241705.001.0001
  20. Burkov, A. 2019. The hundred-page machine learning book. Available at https://order-papers.com/sites/default/files/tmp/webform/order_download/pdf-the-hundred-page-machine-learning-book-andriy-burkov-pdf-download-free-book-d835289.pdf [Last accessed 31 October 2024]
  21. Cammarosano, M. 2015. ‘The location of cult stelae in the light of the Hittite cult-inventories’. In: Petrosyan, A and Bobokhyan, A (eds.) The Vishap Stone Stelae. Yerevan: National Academy of Sciences of Republic of Armenia, pp. 224232.
  22. Cardarelli, L. 2024. ‘From fragments to digital wholeness: An AI generative approach to reconstructing archaeological vessels’. Journal of Cultural Heritage, 70: 250258. DOI: 10.1016/j.culher.2024.09.012
  23. Casini, L, Marchetti, N, Montanucci, A, Orrù, V and Roccetti, M. 2023. ‘A human–AI collaboration workflow for archaeological sites detection’. Scientific Reports, 13(1): 8699. DOI: 10.1038/s41598-023-36015-5
  24. Caspari, G and Crespo, P. 2019. ‘Convolutional neural networks for archaeological site detection–Finding “princely” tombs’. Journal of Archaeological Science, 110: 104998. DOI: 10.1016/j.jas.2019.104998
  25. Chetouani, A, Treuillet, S, Exbrayat, M and Jesset, S. 2020. ‘Classification of engraved pottery sherds mixing deep-learning features by compact bilinear pooling’. Pattern Recognition Letters, 131: 17. DOI: 10.1016/j.patrec.2019.12.009
  26. Chollet, F. 2021. Deep learning with Python. New York: Simon & Schuster.
  27. Chychkarov, Y, Serhiienko, A, Syrmamiikh, I and Kargin, A. 2021. ‘Handwritten Digits Recognition Using SVM, KNN, RF and Deep Learning Neural Networks’. CMIS, 2864: 496509. DOI: 10.32782/cmis/2864-44
  28. Ciccone, G. 2024. ‘ChatGPT as a digital assistant for archaeology: Insights from the Smart Anomaly Detection Assistant development’. Heritage, 7(10): 54285445. DOI: 10.3390/heritage7100256
  29. Clarke, DL. 1968. Analytic archaeology. London: Methuen.
  30. Courtenay, LA, Vanderesse, N, Doyon, L and Souron, A. 2024. ‘Deep Learning-Based Computer Vision Is Not Yet the Answer to Taphonomic Equifinality in Bone Surface Modifications’. Journal of Computer Applications in Archaeology, 7(1): 388411. DOI: 10.5334/jcaa.145
  31. Deng, J, Dong, W, Socher, R, Li, LJ, Li, K and Fei-Fei, L. 2009. ‘Imagenet: A large-scale hierarchical image database’. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp. 248255. DOI: 10.1109/CVPR.2009.5206848
  32. Deravignone, L, Blankholm, HP and Pizziolo, G. 2015. ‘Predictive modeling and artificial neural networks: from model to survey’. In: Barceló, JA and Bogdanovic, I (eds.) Mathematics and archaeology. Boca Raton: CRC Press, pp. 335351.
  33. Djindjian, F. 2015. ‘A short history of the beginnings of mathematics in archaeology’. In: Barceló, JA and Bogdanovic, I (eds.) Mathematics and archaeology. Boca Raton: CRC Press, pp. 6585. DOI: 10.1201/b18530-4
  34. Doran, JE and Hodson, FR. 1975. Mathematics and computers in archaeology. Cambridge, MA: Harvard University Press.
  35. Dunnell, RC. 1986. ‘Methodological issues in Americanist artifact classification’. In: Schiffer, MB (ed.) Advances in archaeological method and theory, Vol. 9. New York: Academic Press, pp. 149207. DOI: 10.1016/B978-0-12-003109-2.50007-6
  36. Elshehaby, S, Al-Saad, M, Panthakkan, A and Al Ahmad, H. 2024. ‘Unlocking ancient secrets: A deep learning approach to cuneiform symbols recognition’. In: Advances in Science and Engineering Technology International Conferences (ASET). IEEE, pp. 16. DOI: 10.1109/ASET60340.2024.10708771
  37. Emmitt, J, Masoud-Ansari, S, Phillipps, R, Middleton, S, Graydon, J and Holdaway, S. 2022. ‘Machine learning for stone artifact identification: Distinguishing worked stone artifacts from natural clasts using deep neural networks’. PLOS One, 17(8): e0271582. DOI: 10.1371/journal.pone.0271582
  38. Engel, C, Mangiafico, P, Issavi, J and Lukas, D. 2019. ‘Computer vision and image recognition in archaeology’. In: Wang, H and Webster, K (eds.) Proceedings of the Conference on Artificial Intelligence for Data Discovery and Reuse, AIDR 2019, Pittsburgh, PA, USA, May 13–15, 2019. New York: ACM, pp. 14. DOI: 10.1145/3359115.3359117
  39. Fahlander, F. 2008. ‘Same, same, but different? Making sense of the seemingly similar’. In: Chilidis, K (ed.) Facets of archaeology. Essays in honour of Lotte Hedeager on her 60th birthday. Oslo: Unipub, pp. 6774.
  40. Finn, C, Abbeel, P and Levine, S. 2017. ‘Model-agnostic meta-learning for fast adaptation of deep networks’. Proceedings of Machine Learning Research, 70: 11261135.
  41. Gattiglia, G. 2025. ‘Managing Artificial Intelligence in Archeology. An overview’. Journal of Cultural Heritage, 71: 225233. DOI: 10.1016/j.culher.2024.11.020
  42. Gattiglia, G and Wright, H. 2018. ‘ArchAIDE: Archaeological Automatic Interpretation and Documentation of Ceramics’. In: Antoniou, A and Wallace, M (eds.) Proceedings of the Workshop on Cultural Informatics co-located with the EUROMED International Conference on Digital Heritage 2018 (EUROMED 2018). CEUR-WS, pp. 6065.
  43. Genz, H and Mielke, DP. (eds.) 2011. Insights into Hittite history and archaeology. Leuven: Peeters.
  44. Géron, A. 2022. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. Farnham: O’Reilly Media, Inc.
  45. Gilibert, A. 2011. Syro-Hittite monumental art and the archaeology of performance: The stone reliefs at Carchemish and Zincirli in the earlier first millennium BCE (Vol. 2). Berlin: Walter de Gruyter. DOI: 10.1515/9783110222265
  46. Gualandi, ML, Gattiglia, G and Anichini, F. 2021. ‘An open system for collection and automatic recognition of pottery through neural network algorithms’. Heritage, 4(1): 140159. DOI: 10.3390/heritage4010008
  47. Guidi, T, Python, L, Forasassi, M, Cucci, C, Franci, M, Argenti, F and Barucci, A. 2023. ‘Egyptian hieroglyphs segmentation with convolutional neural networks’. Algorithms, 16(2): 79. DOI: 10.3390/a16020079
  48. Guyot, A, Lennon, M and Hubert-Moy, L. 2021. ‘Objective comparison of relief visualization techniques with deep CNN for archaeology’. Journal of Archaeological Science: Reports, 38: 103027. DOI: 10.1016/j.jasrep.2021.103027
  49. Hawkins, JD. 2014. ‘Hittite monuments and their sanctity’. In: D’Agostino, A, Orsi, V and Torri, G (eds.) Sacred Landscapes of Hittites and Luwians: Proceedings of the International Conference in Honour of Franca Pecchioli Daddi. Florence: Firenze University Press, pp. 19.
  50. He, K, Zhang, X, Ren, S and Sun, J. 2016. ‘Deep residual learning for image recognition’. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 770778. DOI: 10.1109/CVPR.2016.90
  51. Hospedales, T, Antoniou, A, Micaelli, P and Storkey, A. 2021. ‘Meta-learning in neural networks: A survey’. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 51495169. DOI: 10.1109/TPAMI.2021.3079209
  52. Hundley, MB. 2014. ‘The God Collectors: Hittite Conceptions of the Divine’. Altorientalische Forschungen, 41(2), 176200. DOI: 10.1515/aofo-2014-0014
  53. James, S. 2015. ‘‘Visual competence’ in archaeology: a problem hiding in plain sight’. Antiquity, 89(347): 11891202. DOI: 10.15184/aqy.2015.60
  54. Jamil, AH, Yakub, F, Azizan, A, Roslan, SA, Zaki, SA and Ahmad, SA. 2022. ‘A review on Deep Learning application for detection of archaeological structures’. Journal of Advanced Research in Applied Sciences and Engineering Technology, 26(1): 714. DOI: 10.37934/araset.26.1.714
  55. Jiménez-Puerto, J. 2024. ‘Beyond the naked eye: Employing machine learning and computer vision to explore Iberian oculated idols decorative patterns’. Journal of Archaeological Science: Reports, 55: 104521. DOI: 10.1016/j.jasrep.2024.104521
  56. Kadhim, I and Abed, FM. 2023. ‘A critical review of remote sensing approaches and deep learning techniques in archaeology’. Sensors, 23(6): 2918. DOI: 10.3390/s23062918
  57. Koc, V. 2025. ‘Exploring the role of language models in deciphering and preserving ancient languages’. Asian American Research Letters Journal, 2(1): 7582.
  58. Konar, A. 2006. Computational Intelligence: Principles, techniques and applications. Berlin/Heidelberg: Springer.
  59. Krieger, AD. 1944. ‘The typological concept’. American Antiquity, 9(3): 271288. DOI: 10.2307/275785
  60. LeCun, Y, Bengio, Y and Hinton, G. 2015. ‘Deep learning’. Nature, 521(7553): 436444. DOI: 10.1038/nature14539
  61. Ling, Z, Delnevo, G, Salomoni, P and Mirri, S. 2024. ‘Findings on Machine Learning for Identification of Archaeological Ceramics-A Systematic Literature Review’. IEEE Access, 12: 100167100185. DOI: 10.1109/ACCESS.2024.3429623
  62. Liu, B, Yu, L, Che, C, Lin, Q, Hu, H and Zhao, X. 2023. ‘Integration and Performance Analysis of Artificial Intelligence and Computer Vision Based on Deep Learning Algorithms’. DOI: 10.48550/arXiv.2312.12872
  63. Luger, GF. 2004. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 5th Edition. London: Pearson Education.
  64. MacLeod, N. 2018. ‘The quantitative assessment of archaeological artifact groups: Beyond geometric morphometrics’. Quaternary Science Reviews, 201: 319348. DOI: 10.1016/j.quascirev.2018.08.024
  65. Mantovan, L and Nanni, L. 2020. ‘The computerization of archaeology: Survey on artificial intelligence techniques’. SN Computer Science, 1(5): 267. DOI: 10.1007/s42979-020-00286-w
  66. Moclán, A, Domínguez-Rodrigo, M, Huguet, R, Pizarro-Monzo, M, Arsuaga, JL, Pérez González, A and Baquedano Pérez, E. 2024. ‘Deep learning identification of anthropogenic modifications on a carnivore remain suggests use of hyena pelts by Neanderthals in the Navalmaíllo rock shelter (Pinilla del Valle, Spain)’. Quaternary Science Reviews, 329: 108560. DOI: 10.1016/j.quascirev.2024.108560
  67. Naik, DK and Mammone, RJ. 1992. ‘Meta-neural networks that learn by learning’. In: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, Baltimore, MD, USA, 1992 (Vol. 1). IEEE, pp. 437442. DOI: 10.1109/IJCNN.1992.287172
  68. Navarro, P, Cintas, C, Lucena, M, Fuertes, JM, Delrieux, C and Molinos, M. 2021. ‘Learning feature representation of Iberian ceramics with automatic classification models’. Journal of Cultural Heritage, 48: 6573. DOI: 10.1016/j.culher.2021.01.003
  69. Orellana Figueroa, JD, Reeves, JS, McPherron, SP and Tennie, C. 2021. ‘A proof of concept for machine learning-based virtual knapping using neural networks’. Scientific Reports, 11(1): 112. DOI: 10.1038/s41598-021-98755-6
  70. Pan, SJ and Yang, Q. 2009. ‘A survey on transfer learning’. IEEE Transactions on Knowledge and Data Engineering, 22(10): 13451359. DOI: 10.1109/TKDE.2009.191
  71. Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O and Duchesnay, É. 2011. ‘Scikit-learn: Machine learning in Python’. The Journal of Machine Learning Research, 12: 28252830.
  72. Pothuganti, S. 2018. ‘Review on over-fitting and under-fitting problems in Machine Learning and solutions’. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 7(9): 36923695. DOI: 10.15662/IJAREEIE.2018.0709014
  73. Ravi, S and Larochelle, H. 2017. ‘Optimization as a model for few-shot learning’. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. Amherst, MA: OpenReview.net.
  74. Read, WD. 2007. Artifact classification: A conceptual and methodological approach. Walnut Creek, CA: Left Coast Press.
  75. Reeler, C. 1999. ‘Neural networks and fuzzy logic analysis in archaeology’. In: Dingwall, L, Exon, S, Gaffney,V, Laflin S and van Leusen, M (eds.) Archaeology in the Age of the Internet. CAA97. Computer Applications and Quantitative Methods in Archaeology. Proceedings of the 25th Anniversary Conference, University of Birmingham, April 1997. Archaeopress, Oxford, pp. 108-3108-10.
  76. Robinson, A. 2020. ‘On the origin of symbols: Archaeology, semiotics, and self-transcendence’. In: Deane-Drummond, C and Fuentes, A (eds.) Theology and Evolutionary Anthropology. London: Routledge, pp. 86109. DOI: 10.4324/9780429273650-8
  77. Ruschioni, G, Malchiodi, D, Zanaboni, AM and Bonizzoni, L. 2023. ‘Supervised learning algorithms as a tool for archaeology: Classification of ceramic samples described by chemical element concentrations’. Journal of Archaeological Science: Reports, 49: 103995. DOI: 10.1016/j.jasrep.2023.103995
  78. Russell, SJ and Norvig, P. 2012. Artificial intelligence: a modern approach. 2nd Edition. London: Pearson.
  79. Sakai, M, Lai, Y, Canales, JO, Hayashi, M and Nomura, K. 2023. ‘Accelerating the discovery of new Nasca geoglyphs using deep learning’. Journal of Archaeological Science, 155: 105777. DOI: 10.1016/j.jas.2023.105777
  80. Schmidhuber, J. 1987. Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-… hook. MSc thesis. Munich: Technische Universität München.
  81. Schmidhuber, J. 2015. ‘Deep learning in neural networks: An overview’. Neural Networks, 61: 85117. DOI: 10.1016/j.neunet.2014.09.003
  82. Selvaraju, RR, Cogswell, M, Das, A, Vedantam, R, Parikh, D and Batra, D. 2020. ‘Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization’. International Journal of Computer Vision, 218: 336359. DOI: 10.1007/s11263-019-01228-7
  83. Sharafi, S, Fouladvand, S, Simpson, I and Alvarez, JAB. 2016. ‘Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran’. Journal of Archaeological Science: Reports, 8: 206215. DOI: 10.1016/j.jasrep.2016.06.024
  84. Shelley, C. 1996. ‘Visual abductive reasoning in archaeology’. Philosophy of Science, 63(2): 278301. DOI: 10.1086/289913
  85. Sobotkova, A, Kristensen-McLachlan, RD, Mallon, O and Ross, SA. 2024. ‘Validating predictions of burial mounds with field data: The promise and reality of machine learning’. Journal of Documentation, 80(5): 11671189. DOI: 10.1108/JD-05-2022-0096
  86. Song, Y, Wang, T, Cai, P, Mondal, SK and Sahoo, JP. 2023. ‘A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities’. ACM Computing Surveys, 55(13s): 140. DOI: 10.1145/3582688
  87. Stanford Vision Lab. 2020. ImageNet. Availabe at: https://image-net.org/ [Last accessed 14 January 2026].
  88. Talebi, H and Milanfar, P. 2018. ‘NIMA: Neural image assessment’. IEEE Transactions on Image Processing, 27(8): 39984011. DOI: 10.1109/TIP.2018.2831899
  89. Thrun, S and Pratt, L. 1998. ‘Learning to learn: Introduction and overview’. In: Thrun, S and Pratt, L (eds.) Learning to learn. Boston: Springer Science+Business Media, pp. 317. DOI: 10.1007/978-1-4615-5529-2_1
  90. Trier, ØD, Cowley, DC and Waldeland, AU. 2019. ‘Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland’. Archaeological Prospection, 26(2): 165175. DOI: 10.1002/arp.1731
  91. Troiano, M, Nobile, E, Grignaffini, F, Mangini, F, Mastrogiuseppe, M, Conati Barbaro, C and Frezza, F. 2024. ‘A comparative analysis of machine learning algorithms for identifying cultural and technological groups in archaeological datasets through clustering analysis of homogeneous data’. Electronics, 13(14): 2752. DOI: 10.3390/electronics13142752
  92. Turner-Jones, RN, Tuxworth, G, Haubt, RA and Wallis, L. 2024. ‘Digitising the deep past: Machine learning for rock art motif classification in an educational citizen science application’. ACM Journal on Computing and Cultural Heritage, 17(4): 119. DOI: 10.1145/3665796
  93. Vabalas, A, Gowen, E, Poliakoff, E and Casson, AJ. 2019. ‘Machine learning algorithm validation with a limited sample size’. PLoS One, 14(11): e0224365. DOI: 10.1371/journal.pone.0224365
  94. Van den Hout, T. 2020. ‘Hittite Society, Economy, and Rituals’. Orient, 55: 311. DOI: 10.5356/orient.55.3
  95. Vanschoren, J. 2018. ‘Meta-learning: A survey’. DOI: 10.48550/arXiv.1810.03548
  96. Wang, Q, Xiao, X and Liu, Z. 2024. ‘Using microscopic imaging and ensemble deep learning to classify the provenance of archaeological ceramics’. Scientific Reports, 14(1): 32024. DOI: 10.1038/s41598-024-83533-x
  97. Wang, Y, Yao, Q, Kwok, JT and Ni, LM. 2020. ‘Generalizing from a few examples: A survey on few-shot learning’. ACM Computing Surveys (CSUR), 53(3): 134. DOI: 10.1145/3386252
  98. Weiss, K, Khoshgoftaar, TM and Wang, D. 2016. ‘A survey of transfer learning’. Journal of Big Data, 3: 140. DOI: 10.1186/s40537-016-0043-6
  99. Willems, S, Chaidron, C and Borgers, B. 2024. ‘Don’t judge coarse wares by their ugliness.: The benefits of fabric analysis and the use of Supervised Deep Learning algorithms for the study of Roman pottery’. Bollettino di archeologia, 15: 7396. DOI: 10.60978/BAO_XV_Suppl_01_04
  100. Wong, SC, Gatt, A, Stamatescu, V and McDonnell, MD. 2016. ‘Understanding data augmentation for classification: when to warp?’. In: 2016 international conference on digital image computing: techniques and applications (DICTA). IEEE, pp. 16. DOI: 10.1109/DICTA.2016.7797091
  101. Yalov-Handzel, S, Cohen, I and Aperstein, Y. 2024. ‘Comparative Analysis of CNN Architectures and Loss Functions on Age Estimation of Archaeological Artifacts’. Journal of Computer Applications in Archaeology, 7(1): 185194. DOI: 10.5334/jcaa.136
  102. Yravedra, J, Maté-González, , Courtenay, LA, González-Aguilera, D and Fernández, MF. 2019. ‘The use of canid tooth marks on bone for the identification of livestock predation’. Scientific Reports, 9(1): 16301. DOI: 10.1038/s41598-019-52807-0
  103. Zhang, J, Fang, I, Wu, H, Kaushik, A, Rodriguez, A, Zhao, H, Zhang, J, Zheng, Z, Iovita R and Feng, C. 2024. ‘Luwa dataset: Learning lithic use-wear analysis on microscopic images’. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 2256322573. DOI: 10.1109/CVPR52733.2024.02129
  104. Zhuang, F, Qi, Z, Duan, K, Xi, D, Zhu, Y, Zhu, H, Xiong, H and He, Q. 2020. ‘A comprehensive survey on transfer learning’. Proceedings of the IEEE, 109(1): 4376. DOI: 10.1109/JPROC.2020.3004555
  105. Zidane, F, Coli, VL, Lanteri, J, Marot, J, Brochier, L, Binder, D and Migliaccio, C. 2022. ‘Artificial intelligence-based low-terahertz imaging for archaeological shards’ classification’. IEEE Transactions on Antennas and Propagation, 70(8): 63006312. DOI: 10.1109/TAP.2022.3189553
DOI: https://doi.org/10.5334/jcaa.196 | Journal eISSN: 2514-8362
Language: English
Submitted on: Jan 8, 2025
|
Accepted on: Dec 3, 2025
|
Published on: Jan 30, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Deniz Kayıkcı, Iban Berganzo-Besga, Juan Antonio Barceló, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 9 (2026): Issue 1