Have a personal or library account? Click to login
Archaeological Classification of Small Datasets Using Meta- and Transfer Learning Methods: A Case Study on Hittite Stele Fragments Cover

Archaeological Classification of Small Datasets Using Meta- and Transfer Learning Methods: A Case Study on Hittite Stele Fragments

Open Access
|Jan 2026

Figures & Tables

jcaa-9-1-196-g1.jpg
Figure 1

Hittite cities in the scope of the study.

jcaa-9-1-196-g2.jpg
Figure 2

Cropped part sample of images.

jcaa-9-1-196-g3.jpg
Figure 3

Data transformation pipeline.

jcaa-9-1-196-g4.jpg
Figure 4

Dataset: training data on the left (28 samples for each class) and testing data on the right (6 samples for each class).

Table 1

Software libraries and programming environment.

LIBRARYVERSION
Python3.11
PyTorch2.3.0+cu121
Seaborn0.13.2
Scikit-learn1.2.2
Matplotlib3.10.0
Torchvision0.18.0+cu121
CUDA12.1
Higher0.2.1
Evograd0.1.2
Easyfsl1.5.0
Scipy1.15.2
NumPy1.25.2
Pandas2.2.2
Threadpoolctl3.6.0
Joblib1.4.2
Google CollaborationA-100 GPU
Table 2

Parameters of the initial dataset implemented models.

HYPERPARAMETERCONVENTIONAL ML MODELSTRANSFER LEARNING (RESNET18)HYBRID (MAML+FSL+RESNET18)SIMPLE CNN + FSL
Architecture Specific
Base architectureN/AResNet18 (pretrained)ResNet18 (pretrained)Custom CNN
Frozen layersN/Alayer1, layer2layer1, layer2None
Dropout ratesN/A0.5, 0.30.5, 0.30.5
Learning Process
Batch sizeN/A16168
Number of epochsN/A3020100
Optimization
OptimizerN/AAdamAdamSGD
Learning rateN/A0.001Multi-tier: 0.001 (fc),
0.0001 (layer4),
0.00001 (layer3)
Multi-tier:
0.001 (conv), 0.01 (fc)
Weight decayN/A0.0010.0010.01
MomentumN/AN/AN/A0.9
Meta-Learning
Meta learning rateN/AN/A0.0005N/A
Inner learning rateN/AN/A0.01N/A
Inner updatesN/AN/A3N/A
Meta updatesN/AN/A100N/A
Regularization
L2 lambdaN/AN/A0.0010.001
Gradient clip normN/AN/A1.01.0
Early Stopping
PatienceN/A5510
Loss Function
Function typeVaries by modelCrossEntropyLossCrossEntropyLoss
with class weights
Focal Loss
Focal Loss gammaN/AN/AN/A2
Learning Rate Scheduling
SchedulerN/AReduceLROnPlateauReduceLROnPlateauReduceLROnPlateau
Schedule factorN/A0.50.50.5
Schedule patienceN/A555
Model-Specific Parameters
SVMkernel=‘rbf’, random_state=42N/AN/AN/A
KNNn_neighbors=5N/AN/AN/A
Random Forestn_estimators=100, random_state=42N/AN/AN/A
Logistic Regressionmulti_class=‘ovr’, random_state=42, max_iter=1000N/AN/AN/A
Decision Treerandom_state=42N/AN/AN/A
Naive BayesDefault parametersN/AN/AN/A
Validation
Cross-validation folds5 (3 for enhanced vs)33N/A
Random seed42123123123
Table 3

Performance comparison of the models, averaged for the four classes in initial dataset: Sakçagözü, Alacahöyük, Karkamış, Arslantepe.

MODELTRAINING (VAL.%)TEST%
Hybrid Model (MAML+FSL+ResNet18)73.2181.94
Transfer Learning (Only Pre-Trained Resnet18)83.9372.22
Simple CNN + FSL5844
Reference
Human Expert Prediction (Assoc. Prof. in Hittite Art)62.50
Table 4

Conventional machine learning results, averaged for the four classes: Sakçagözü, Alacahöyük, Karkamış, Arslantepe. Corresponding confusion matrices are included in Appendix 2.

MODELTRAINING ACCURACYTRAINING PRECISIONTRAINING F1 SCORETEST ACCURACYTEST PRECISIONTEST F1 SCOREAVERAGE CV SCORE
Support Vector Machines (SVM)0.91670.92370.91600.39290.40080.39100.3433
K-Nearest Neighbors (KNN)0.53700.64010.54300.25000.50940.23410.3147
Random Forest (RF)1.00001.00001.00000.42860.44840.42770.3152
Logistic Regression (LR)1.00001.00001.00000.50000.58930.51190.3970
Decision Tree (DT)1.00001.00001.00000.25000.29890.26550.3325
Naive Bayes (NB)0.72220.76160.71940.35710.36620.34490.3524
jcaa-9-1-196-g5.png
Figure 5

Performance metrics for each fold according to initial dataset implemented models.

Table 5

Summary of metrics across three folds for initial dataset implemented models.

METRICFOLD 1 (%)FOLD 2 (%)FOLD 3 (%)AVERAGE (%)
Accuracy87.585.288.186.9
Precision78.680.379.879.6
Recall81.37980.580.3
F1 Score79.979.680.179.9
Table 6

Performance metrics of initial dataset implemented hybrid model. Disaggregated results.

METRICSAKÇAGÖZÜALACAHÖYÜKKARKAMIÜARSLANTEPEAVERAGE
Training – Precision0.8110.5860.8610.7790.759
Training – Recall0.7480.6440.5371.0000.732
Training – F1-Score0.7700.6040.6490.8760.725
Test – Precision0.8410.8040.7431.0000.847
Test – Recall0.7780.8330.7780.8890.820
Test – F1-Score0.7970.7970.7550.9330.821
Table 7

Performance metrics of initial dataset implemented transfer learning model. Disaggregated results.

METRICSAKÇAGÖZÜALACAHÖYÜKKARKAMIÜARSLANTEPEAVERAGE
Training – Precision0.92960.92590.71960.81870.93
Training – Recall0.89630.88890.71480.86300.92
Training – F1-Score0.90840.90630.70790.82830.92
Test – Precision10.72220.59830.80560.84
Test – Recall0.77780.83330.77780.500.83
Test – F1-Score0.85860.76670.62530.58890.83
Table 8

Performance metrics of initial dataset implemented simple CNN + FSL. Disaggregated Results.

METRICSAKÇAGÖZÜALACAHÖYÜKKARKAMIÜARSLANTEPEAVERAGE
Training – Precision0.630.540.750.450.59
Training – Recall0.930.460.430.500.58
Training – F1-Score0.750.500.550.470.56
Test – Precision0.790.150.500.310.43
Test – Recall0.920.170.330.330.43
Test – F1-Score0.850.160.400.320.43
Table 9

Performance comparison between initial and enhanced datasets implemented models.

MODELINITIAL DATASETENHANCED DATASETIMPROVEMENT
TRAINING ACCURACYTEST ACCURACYCV SCORETRAINING ACCURACYTEST ACCURACYCV SCORETEST ACCURACY
Statistical
SVM91.67%39.29%34.33%98.68%55.36%45.32%+16.07%
KNN53.70%25.00%31.47%55.92%55.36%44.08%+30.36%
Random Forest100.00%42.86%31.52%100.00%55.36%45.32%+12.50%
Logistic Regression100.00%50.00%39.70%100.00%57.14%48.01%+7.14%
Decision Tree100.00%25.00%33.25%100.00%33.93%35.54%+8.93%
Naive Bayes72.22%35.71%35.24%62.50%44.64%42.05%+8.93%
ANNs Based
Simple CNN + FSL58.00%44.00%N/A90.44%43.45%N/A–0.55%
Hybrid Model73.21%81.94%N/A93.43%82.74%N/A+0.80%
Transfer Learning83.93%72.22%N/A83.58%75.60%N/A+2.71%
Reference
Human Expert Prediction on Enhanced Dataset (Assoc. Prof. in Hittite Art)62.50%85.70%
Table 10

Class-Specific performance of testing on enhanced dataset.

CLASSTRANSFER LEARNING (RESNET18)HYBRID (MAML+FSL+RESNET18)
PRECISIONRECALLF1-SCOREPRECISIONRECALLF1-SCORE
Alacahöyük0.610.780.681.000.790.88
Aslantepe0.830.710.760.810.930.87
Karkamış0.810.640.720.710.710.71
Sakçagözü0.9310.960.931.000.97
Average0.790.780.780.860.860.86
Table 11

Comparative analysis for enhanced dataset predictions for each class on test.

CLASSHUMAN EXPERTTRANSFER LEARNINGHYBRID MODEL
Overall Accuracy85.7%75.6%82.74%
Alacahöyük12/14 (85.7%)10/14 (71.4%)11/14 (78.6%)
Aslantepe11/14 (78.6%)10/14 (71.4%)13/14 (92.9%)
Karkamış11/14 (78.6%)9/14 (64.3%)10/14 (71.4%)
Sakçagözü14/14 (100%)13/14 (92.9%)14/14 (100%)
jcaa-9-1-196-g6.jpg
Figure 6

Grad-CAM, Guided Backpropagation, and Guided Grad-CAM applied on the trained model without the background class.

Table 12

Comparison of performance metrics of nested CV models with and without the background class.

BEST TRAINING MEAN ACCURACYTESTING MEAN ACCURACY
4-class model0.92750.7778
5-class model0.80590.6518
jcaa-9-1-196-g7.jpg
Figure 7

Grad-CAM, Guided Backpropagation, and Guided Grad-CAM applied on the trained model with the background class.

DOI: https://doi.org/10.5334/jcaa.196 | Journal eISSN: 2514-8362
Language: English
Submitted on: Jan 8, 2025
|
Accepted on: Dec 3, 2025
|
Published on: Jan 30, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Deniz Kayıkcı, Iban Berganzo-Besga, Juan Antonio Barceló, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 9 (2026): Issue 1