References
- 1Adamopoulos, E and Rinaudo, F. 2020. ‘UAS-based archaeological remote sensing: Review, meta-analysis and state-of-the-art’. Drones, 4(3): 46. DOI: 10.3390/drones4030046
- 2Agisoft Metashape. 2024.
https://www.agisoft.com/ . - 3Bavle, H, Sanchez-Lopez, JL, Cimarelli, C, Tourani, A and Voos, H. 2023. ‘From slam to situational awareness: Challenges and survey’. Sensors, 23(10): 4849. DOI: 10.3390/s23104849
- 4Blueye Robotics. 2024.
https://www.blueyerobotics.com . - 5Bouguet, J. 2000. Matlab Camera Calibration Toolbox.
- 6Campana, S. 2017. ‘Drones in Archaeology. State-of-the-art and Future Perspectives’. Archaeol. Prospect. 24: 275–296. DOI: 10.1002/arp.1569
- 7Campbell, P and Koutsouflakis, G. 2021.
‘Aegean Navigation and the Shipwrecks of Fournoi: the archipelago in Context’. Under the Mediterranean I . Studies in Maritime Archaeology, Leiden: Sidestone Press, 279–298. - 8Campos, C, Elvira, R, Rodríguez, JJG, Montiel, JM and Tardós, JD. 2021. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics, 37(6): 1874–1890. DOI: 10.1109/TRO.2021.3075644
- 9Costa, E, Guerra, F and Vernier, P. 2018. ‘Self-assembled ROV and photogrammetric surveys with low cost techniques’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42: 275–279. DOI: 10.5194/isprs-archives-XLII-2-275-2018
- 10Deep Trekker. 2024.
https://www.deeptrekker.com/ . - 11Diamanti, E, Løvås, HS, Larsen, MK and Ødegård, Ø. 2021. ‘A multi-camera system for the integrated documentation of Underwater Cultural Heritage of high structural complexity; The case study of M/S Helma wreck’. IFAC-PapersOnLine, 54(16): 422–429. DOI: 10.1016/j.ifacol.2021.10.126
- 12Diamanti, E and Ødegård, Ø. 2024. ‘Visual sensing on marine robotics for the 3D documentation of Underwater Cultural Heritage: A review’. Journal of Archaeological Science, 166:
105985 . DOI: 10.1016/j.jas.2024.105985 - 13Diamanti, E, Yip, M, Stahl, A and Ødegård, Ø. 2024. ‘Advancing Data Quality of Marine Archaeological Documentation Using Underwater Robotics: From Simulation Environments to Real-World Scenarios’. Journal of Computer Applications in Archaeology, 7(1): 153–169. DOI: 10.5334/jcaa.147
- 14Drap, P. 2012.
Underwater Photogrammetry for Archaeology, in: Special Applications of Photogrammetry . IntechOpen. DOI: 10.5772/33999 - 15Drap, P, Seinturier, J, Hijazi, B, Merad, D, Boi, JM, Chemisky, B, Seguin, E and Long, L. 2015. ‘The ROV 3D Project: Deep-sea underwater survey using photogrammetry: Applications for underwater archaeology’. Journal on Computing and Cultural Heritage (JOCCH), 8(4): 1–24. DOI: 10.1145/2757283
- 16Gambin, T, Sausmekat, M, Wood, J and Hyttinen, K. 2023. ‘When Time Is of the Essence—Recording an Underwater Excavation at 110 m’. Journal of Marine Science and Engineering, 11(9): 1835. DOI: 10.3390/jmse11091835
- 17Gracias, N, Garcia, R, Campos, R, Hurtos, N, Prados, R, Shihavuddin, A, Nicosevici, T, Elibol, A, Neumann, L and Escartin, J. 2017. ‘Application challenges of underwater vision’. Computer Vision in Vehicle Technology: Land, Sea & Air, 133–160. DOI: 10.1002/9781118868065.ch7
- 18Johnson-Roberson, M, Bryson, M, Friedman, A, Pizarro, O, Troni, G, Ozog, P and Henderson, JC. 2017. ‘High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology’. Journal of Field Robotics, 34(4): 625–643. DOI: 10.1002/rob.21658
- 19Kapetanović, N, Vasilijević, A, Nađ, Đ, Zubčić, K and Mišković, N. 2020. ‘Marine robots mapping the present and the past: Unraveling the secrets of the deep’. Remote sensing, 12(23): 3902. DOI: 10.3390/rs12233902
- 20Korseai - Institute of Historical & Archaeological Research. 2024.
https://korseai.org/ . - 21Koutsouflakis, G and Campbell, P. 2021.
Roman and Late Roman pontic cargoes in the Aegean: the evidence from shipwrecks. The Greeks and Romans in the Black Sea and the Importance of the Pontic Region for the Graeco-Roman World (7th century BC-5th century AD): 20 Years On (1997–2017) , Archaeopress, pp. 267–279. DOI: 10.2307/j.ctv1pdrqhw.41 - 22Macdonald, S. 2017. Shipwreck Hunting with Sonar Equipped Underwater Drone. Accessed August 2024 from
https://www.deeptrekker.com/news/shipwreck-hunting-underwater-drone . - 23Mogstad, AA, Ødegård, Ø, Nornes, SM, Ludvigsen, M, Johnsen, G, Sørensen, AJ and Berge, J. 2020. ‘Mapping the historical shipwreck figaro in the high arctic using underwater sensor-carrying robots’. Remote Sensing, 12(6): 997. DOI: 10.3390/rs12060997
- 24Pacheco-Ruiz, R, Adams, J, Pedrotti, F, Grant, M, Holmlund, J and Bailey, C. 2019. ‘Deep sea archaeological survey in the Black Sea–Robotic documentation of 2,500 years of human seafaring’. Deep Sea Research Part I: Oceanographic Research Papers, 152:
103087 . DOI: 10.1016/j.dsr.2019.103087 - 25Pepe, M, Alfio, VS and Costantino, D. 2022. ‘UAV platforms and the SfM-MVS approach in the 3D surveys and modelling: A review in the cultural heritage field’. Applied Sciences, 12(24):
12886 . DOI: 10.3390/app122412886 - 26Scaradozzi, D, Sorbi, L, Zoppini, F and Gambogi, P. 2013, September.
Tools and techniques for underwater archaeological sites documentation . In 2013 OCEANS-San Diego (pp. 1–6). IEEE. DOI: 10.23919/OCEANS.2013.6741298 - 27Scott-Ireton, DA, Jones, JE and Raupp, JT. (Eds.). (2023).
Citizen science in maritime archaeology: the power of public engagement . University Press of Florida. DOI: 10.5744/florida/9780813069739.001.0001 - 28Severino, U, Fortuna, S, Lagudi, A, Bruno, F, Mišković, N and Djapic, V. 2023.
Architecture of a Low-Cost Solution for ROVs to Improve Navigation and Data Collection . In International Symposium on Distributed Computing and Artificial Intelligence (pp. 214–223). Cham: Springer Nature Switzerland. DOI: 10.1007/978-3-031-38318-2_22 - 29Stein, M. 2023.
How the Micro ROV Class Will Change the Maritime Sector: An Introductory Analysis on ROV, Big Data and AI . In Autonomous Vehicles-Applications and Perspectives. IntechOpen. DOI: 10.5772/intechopen.1002223 - 30Tomar, S. 2006. ‘Converting video formats with FFmpeg’. Linux Journal, 2006(146):
10 . - 31Tritech International Ltd. 2024.
https://www.tritech.co.uk/ . - 32Waagen, J. 2019. ‘New technology and archaeological practice. Improving the primary archaeological recording process in excavation by means of UAS photogrammetry’. J. Archaeol. Sci. 101: 11–20. DOI: 10.1016/j.jas.2018.10.011
- 33Yamafune, K, Torres, R and Castro, F. 2017. ‘Multi-image photogrammetry to record and reconstruct underwater shipwreck sites’. Journal of Archaeological Method and Theory, 24: 703–725. DOI: 10.1007/s10816-016-9283-1
