Have a personal or library account? Click to login
Underwater Drones as a Low-Cost, yet Powerful Tool for Underwater Archaeological Mapping: Case Studies from the Mediterranean Cover

Underwater Drones as a Low-Cost, yet Powerful Tool for Underwater Archaeological Mapping: Case Studies from the Mediterranean

Open Access
|Jan 2025

References

  1. 1Adamopoulos, E and Rinaudo, F. 2020. ‘UAS-based archaeological remote sensing: Review, meta-analysis and state-of-the-art’. Drones, 4(3): 46. DOI: 10.3390/drones4030046
  2. 2Agisoft Metashape. 2024. https://www.agisoft.com/.
  3. 3Bavle, H, Sanchez-Lopez, JL, Cimarelli, C, Tourani, A and Voos, H. 2023. ‘From slam to situational awareness: Challenges and survey’. Sensors, 23(10): 4849. DOI: 10.3390/s23104849
  4. 4Blueye Robotics. 2024. https://www.blueyerobotics.com.
  5. 5Bouguet, J. 2000. Matlab Camera Calibration Toolbox.
  6. 6Campana, S. 2017. ‘Drones in Archaeology. State-of-the-art and Future Perspectives’. Archaeol. Prospect. 24: 275296. DOI: 10.1002/arp.1569
  7. 7Campbell, P and Koutsouflakis, G. 2021. ‘Aegean Navigation and the Shipwrecks of Fournoi: the archipelago in Context’. Under the Mediterranean I. Studies in Maritime Archaeology, Leiden: Sidestone Press, 279298.
  8. 8Campos, C, Elvira, R, Rodríguez, JJG, Montiel, JM and Tardós, JD. 2021. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics, 37(6): 18741890. DOI: 10.1109/TRO.2021.3075644
  9. 9Costa, E, Guerra, F and Vernier, P. 2018. ‘Self-assembled ROV and photogrammetric surveys with low cost techniques’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42: 275279. DOI: 10.5194/isprs-archives-XLII-2-275-2018
  10. 10Deep Trekker. 2024. https://www.deeptrekker.com/.
  11. 11Diamanti, E, Løvås, HS, Larsen, MK and Ødegård, Ø. 2021. ‘A multi-camera system for the integrated documentation of Underwater Cultural Heritage of high structural complexity; The case study of M/S Helma wreck’. IFAC-PapersOnLine, 54(16): 422429. DOI: 10.1016/j.ifacol.2021.10.126
  12. 12Diamanti, E and Ødegård, Ø. 2024. ‘Visual sensing on marine robotics for the 3D documentation of Underwater Cultural Heritage: A review’. Journal of Archaeological Science, 166: 105985. DOI: 10.1016/j.jas.2024.105985
  13. 13Diamanti, E, Yip, M, Stahl, A and Ødegård, Ø. 2024. ‘Advancing Data Quality of Marine Archaeological Documentation Using Underwater Robotics: From Simulation Environments to Real-World Scenarios’. Journal of Computer Applications in Archaeology, 7(1): 153169. DOI: 10.5334/jcaa.147
  14. 14Drap, P. 2012. Underwater Photogrammetry for Archaeology, in: Special Applications of Photogrammetry. IntechOpen. DOI: 10.5772/33999
  15. 15Drap, P, Seinturier, J, Hijazi, B, Merad, D, Boi, JM, Chemisky, B, Seguin, E and Long, L. 2015. ‘The ROV 3D Project: Deep-sea underwater survey using photogrammetry: Applications for underwater archaeology’. Journal on Computing and Cultural Heritage (JOCCH), 8(4): 124. DOI: 10.1145/2757283
  16. 16Gambin, T, Sausmekat, M, Wood, J and Hyttinen, K. 2023. ‘When Time Is of the Essence—Recording an Underwater Excavation at 110 m’. Journal of Marine Science and Engineering, 11(9): 1835. DOI: 10.3390/jmse11091835
  17. 17Gracias, N, Garcia, R, Campos, R, Hurtos, N, Prados, R, Shihavuddin, A, Nicosevici, T, Elibol, A, Neumann, L and Escartin, J. 2017. ‘Application challenges of underwater vision’. Computer Vision in Vehicle Technology: Land, Sea & Air, 133160. DOI: 10.1002/9781118868065.ch7
  18. 18Johnson-Roberson, M, Bryson, M, Friedman, A, Pizarro, O, Troni, G, Ozog, P and Henderson, JC. 2017. ‘High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology’. Journal of Field Robotics, 34(4): 625643. DOI: 10.1002/rob.21658
  19. 19Kapetanović, N, Vasilijević, A, Nađ, Đ, Zubčić, K and Mišković, N. 2020. ‘Marine robots mapping the present and the past: Unraveling the secrets of the deep’. Remote sensing, 12(23): 3902. DOI: 10.3390/rs12233902
  20. 20Korseai - Institute of Historical & Archaeological Research. 2024. https://korseai.org/.
  21. 21Koutsouflakis, G and Campbell, P. 2021. Roman and Late Roman pontic cargoes in the Aegean: the evidence from shipwrecks. The Greeks and Romans in the Black Sea and the Importance of the Pontic Region for the Graeco-Roman World (7th century BC-5th century AD): 20 Years On (1997–2017), Archaeopress, pp. 267279. DOI: 10.2307/j.ctv1pdrqhw.41
  22. 22Macdonald, S. 2017. Shipwreck Hunting with Sonar Equipped Underwater Drone. Accessed August 2024 from https://www.deeptrekker.com/news/shipwreck-hunting-underwater-drone.
  23. 23Mogstad, AA, Ødegård, Ø, Nornes, SM, Ludvigsen, M, Johnsen, G, Sørensen, AJ and Berge, J. 2020. ‘Mapping the historical shipwreck figaro in the high arctic using underwater sensor-carrying robots’. Remote Sensing, 12(6): 997. DOI: 10.3390/rs12060997
  24. 24Pacheco-Ruiz, R, Adams, J, Pedrotti, F, Grant, M, Holmlund, J and Bailey, C. 2019. ‘Deep sea archaeological survey in the Black Sea–Robotic documentation of 2,500 years of human seafaring’. Deep Sea Research Part I: Oceanographic Research Papers, 152: 103087. DOI: 10.1016/j.dsr.2019.103087
  25. 25Pepe, M, Alfio, VS and Costantino, D. 2022. ‘UAV platforms and the SfM-MVS approach in the 3D surveys and modelling: A review in the cultural heritage field’. Applied Sciences, 12(24): 12886. DOI: 10.3390/app122412886
  26. 26Scaradozzi, D, Sorbi, L, Zoppini, F and Gambogi, P. 2013, September. Tools and techniques for underwater archaeological sites documentation. In 2013 OCEANS-San Diego (pp. 16). IEEE. DOI: 10.23919/OCEANS.2013.6741298
  27. 27Scott-Ireton, DA, Jones, JE and Raupp, JT. (Eds.). (2023). Citizen science in maritime archaeology: the power of public engagement. University Press of Florida. DOI: 10.5744/florida/9780813069739.001.0001
  28. 28Severino, U, Fortuna, S, Lagudi, A, Bruno, F, Mišković, N and Djapic, V. 2023. Architecture of a Low-Cost Solution for ROVs to Improve Navigation and Data Collection. In International Symposium on Distributed Computing and Artificial Intelligence (pp. 214223). Cham: Springer Nature Switzerland. DOI: 10.1007/978-3-031-38318-2_22
  29. 29Stein, M. 2023. How the Micro ROV Class Will Change the Maritime Sector: An Introductory Analysis on ROV, Big Data and AI. In Autonomous Vehicles-Applications and Perspectives. IntechOpen. DOI: 10.5772/intechopen.1002223
  30. 30Tomar, S. 2006. ‘Converting video formats with FFmpeg’. Linux Journal, 2006(146): 10.
  31. 31Tritech International Ltd. 2024. https://www.tritech.co.uk/.
  32. 32Waagen, J. 2019. ‘New technology and archaeological practice. Improving the primary archaeological recording process in excavation by means of UAS photogrammetry’. J. Archaeol. Sci. 101: 1120. DOI: 10.1016/j.jas.2018.10.011
  33. 33Yamafune, K, Torres, R and Castro, F. 2017. ‘Multi-image photogrammetry to record and reconstruct underwater shipwreck sites’. Journal of Archaeological Method and Theory, 24: 703725. DOI: 10.1007/s10816-016-9283-1
DOI: https://doi.org/10.5334/jcaa.184 | Journal eISSN: 2514-8362
Language: English
Submitted on: Nov 7, 2024
Accepted on: Nov 19, 2024
Published on: Jan 24, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Eleni Diamanti, Øyvind Ødegård, Vasilis Mentogiannis, George Koutsouflakis, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.