Have a personal or library account? Click to login
Getting to the Point: Defining, Reconstructing and Investigating Shape Through a Procrustean Protocol Cover

Getting to the Point: Defining, Reconstructing and Investigating Shape Through a Procrustean Protocol

Open Access
|May 2025

References

  1. 1Adams, DC. 2016. ‘Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure’. Methods in Ecology and Evolution, 7: 565572. DOI: 10.1111/2041-210X.12511
  2. 2Adams, DC and Collyer, ML. 2019. ‘Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data’. Evolution, 73: 23522367. DOI: 10.1111/evo.13867
  3. 3Adams, DC, Collyer, ML, Kaliontzopoulou, A and Baken, E. 2023. Geomorph: Software for geometric morphometric analyses. R package version 4.0.6. https://cran.r-project.org/package=geomorph.
  4. 4Arbour, J and Brown, C. 2014. ‘Incomplete specimens in Geometric Morphometric Analyses’. Methods in Ecology and Evolution, 5: 1626. DOI: 10.1111/2041-210X.12128
  5. 5Arbour, JH and Brown, CM. 2022. LOST. Missing Morphometric Data Simulation and Estimation. R package version 2.0.2. https://cran.r-project.org/web/packages/LOST/index.html.
  6. 6Artec 3D. 2023. Artec Eva. Portable 3D Scanner. https://cdn.artec3d.com/content-hub-files/artec-eva-brochure-eng-2023.pdf, 12th October 2023.
  7. 7Azur, MJ, Stuart, EA, Frangakis, C and Leaf, PJ. 2011. ‘Multiple imputation by chained equations: what is it and how does it work?’. International Journal of Methods in Psychiatric Research, 20(1): 4049. DOI: 10.1002/mpr.329
  8. 8Bardua, C, Felice, RN, Watanabe, A, Fabre, A-C and Goswami, A. 2019. ‘A Practical Guide to Sliding and Surface Semilandmarks in Morphometric Analyses’. Integrative Organismal Biology, 1(1): 134. DOI: 10.1093/iob/obz016
  9. 9Betti, L, von Cramon-Taubadel, N, Manica, A and Lycett, SJ. 2013. ‘Global Geometric Morphometric Analyses of the Human Pelvis Reveal Substantial Neutral Population History Effects, Even across Sexes’. PLoS ONE, 8(2): e55909. DOI: 10.1371/journal.pone.0055909
  10. 10Bookstein, FL. 1991. Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511573064
  11. 11Bookstein, FL. 1997. ‘Landmark methods for forms without landmarks: localizing group differences in outline shape’. Medical Image Analysis, 1: 225243. DOI: 10.1016/S1361-8415(97)85012-8
  12. 12Breiman, L. 2001. ‘Random Forests’. Machine Learning, 45(1): 532. DOI: 10.1023/A:1010933404324
  13. 13Bucchi, A, Del Bove, A, López-Lázaro, S, Quevedo-Díaz, F and Fonseca, GM. 2022. ‘Digital Reconstructions Using Linear Regression: How Well Can It Estimate Missing Shape Data from Small Damaged Areas?’. Biology, 11: 1741. DOI: 10.3390/biology11121741
  14. 14Buikstra, JE and Ubelaker, DH. 1994. Standards for Data Collection from Human Skeletal Remains. Arkansas: Twelfth Printing 2010.
  15. 15Candelas Gonzalez, N, Rascon Perez, J, Chamero, B, Cambra-Moo, O and Gonzalez Martın, A. 2017. ‘Geometric morphometrics reveals restrictions on the shape of the female os coxae’. Journal of Anatomy, 230: 6674. DOI: 10.1111/joa.12528
  16. 16Collyer, ML and Adams, DC. 2018. ‘RRPP: An R package for fitting linear models to high-dimensional data using residual randomization’. Methods in Ecology Evolution, 9: 17721779. DOI: 10.1111/2041-210X.13029
  17. 17Collyer, ML, Sekora, DJ and Adams, DC. 2015. ‘A method for analysis of phenotypic change for phenotypes described by high-dimensional data’. Heredity, 115(4): 357365. DOI: 10.1038/hdy.2014.75
  18. 18Dryden, IL and Mardia, KV. 2016. Statistical shape analysis, with applications in R. Second Edition. Chichester: Wiley. DOI: 10.1002/9781119072492
  19. 19Ferembach, D, Schwidetzky, I and Stloukal, M. 1980. ‘Recommendations for age and sex diagnoses of skeletons’. Journal of Human Evolution, 9: 517549. DOI: 10.1016/0047-2484(80)90061-5
  20. 20Fischer, B and Mitteroecker, P. 2017. Allometry and Sexual Dimorphism in the Human Pelvis. The Anatomical Record, 300: 698705. DOI: 10.1002/ar.23549
  21. 21Goodall, C. 1991. ‘Procrustes Methods in the Statistical Analysis of Shape’. Journal of the Royal Statistical Society Series B, 53(2): 285339. DOI: 10.1111/j.2517-6161.1991.tb01825.x
  22. 22Gosling, JA, Harris, PF, Whitmore, I and Willan, PLT. 2002. Human Anatomy: Colour Atlas and Text. Amsterdam: Elsevier Limited.
  23. 23Gray, H. 1918. Anatomy of the Human Body. Twentieth Edition. Philadelphia: Lea & Febiger. DOI: 10.5962/bhl.title.20311
  24. 24Gunz, P and Mitteroecker, P. 2013. ‘Semilandmarks: a method for quantifying curves and surface’. Hystrix, 24(1): 103109.
  25. 25Gunz, P, Mitteroecker, P, Neubauer, S, Weber, GW and Bookstein, FL. 2009. ‘Principles for the virtual reconstruction of hominin crania’. Journal of Human Evolution, 57: 4862. DOI: 10.1016/j.jhevol.2009.04.004
  26. 26Kendall, DG. 1984. ‘Shape-manifolds, Procrustean metrics and complex projective spaces’. Bulletin of the London Mathematical Society, 16: 81121. DOI: 10.1112/blms/16.2.81
  27. 27Kenyhercz, MW, Klales, AR and Kenyhercz, WE. 2014. ‘Molar Size and Shape in the Estimation of Biological Ancestry: A Comparison of Relative Cusp Location Using Geometric Morphometrics and Interlandmark Distances’. American Journal of Physical Anthropology, 153: 269279. DOI: 10.1002/ajpa.22429
  28. 28Klingenberg, CP. 2009. ‘Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses’. Evolution and Development, 11(40): 405421. DOI: 10.1111/j.1525-142X.2009.00347.x
  29. 29Klingenberg, CP. 2015. ‘Analysing Fluctuating Asymmetry with Geometric Morphometrics: Concepts, Methods, and Applications’. Symmetry, 7: 843934. DOI: 10.3390/sym7020843
  30. 30Klingenberg, CP and McIntyre, GS. 1998. ‘Geometric Morphometrics of Developmental Instability: Analyzing Patterns of Fluctuating Asymmetry with Procrustes Methods’. Evolution, 52(5): 13631375. DOI: 10.2307/2411306
  31. 31Kurki, HK. 2007. ‘Protection of Obstetric Dimensions in a Small-Bodied Human Sample’. American Journal of Physical Anthropology, 133: 11521165. DOI: 10.1002/ajpa.20636
  32. 32Little, RJ and Rubin, DB. 2019. Statistical Analysis with Missing Data. Hoboken: Wiley. DOI: 10.1002/9781119482260
  33. 33Mack, C, Su, Z and Westreich, D. 2018. ‘Managing Missing Data in Patient Registries: Addendum to Registries for Evaluating Patient Outcomes: A User’s Guide. Third Edition’. Agency for Healthcare Research and Quality Paper, 17(18): EHC015-EF. DOI: 10.23970/AHRQREGISTRIESMISSINGDATA
  34. 34MacLeod, N. 1999. ‘Generalizing and Extending the Eigenshape Method of Shape Space Visualization and Analysis’. Paleobiology, 25(1): 107138.
  35. 35Mahoney Swales, D. 2019. ‘A biocultural analysis of mortuary practices in the later Anglo-Saxon to Anglo-Norman Black Gate Cemetery, Newcastle-upon-Tyne, England’. International Journal of Osteoarchaeology, 29: 198219. DOI: 10.1002/oa.2729
  36. 36Marcy, AE, Fruciano, C, Phillips, MJ, Mardon, K and Weisbecker, V. 2018. ‘Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses’. PeerJ, 6: e5032e5032. DOI: 10.7717/peerj.5032
  37. 37Marić, I, Šiljeg, A and Domazetović, F. 2022. Precision Assessment of Artec Space Spider 3D Handheld Scanner for Quantifying Tufa Formation Dynamics on Small Limestone Plates (PLs). Proceedings of the 8th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2022), 6774. DOI: 10.5220/0010886900003185
  38. 38McKinley, JI. 2004. ‘Compiling a skeletal inventory: disarticulated and co-mingled remains’. In: Brickley, M and McKinley, JI (eds.) ‘Guidelines to the Standards for Recording Human Remains’. Institute of Field Archaeologists Paper 7. PP 1417.
  39. 39Neeser, R, Rogers Ackermann, R and Gain, J. 2009. ‘Comparing the Accuracy and Precision of Three Techniques Used for Estimating Missing Landmarks When Reconstructing Fossil Hominin Crania’. American Journal of Physical Anthropology, 140: 118. DOI: 10.1002/ajpa.21023
  40. 40Perez, SI, Bernal, V and Gonzalez, PN. 2006. ‘Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation’. Journal of Anatomy, 208: 769784. DOI: 10.1111/j.1469-7580.2006.00576.x
  41. 41R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  42. 42Raynor, C, McCarthy, R and Clough, S. 2011. Coronation Street, South Shields, Tyne and Wear. Archaeological Excavation and Osteological Analysis Report, Oxford Archaeology North.
  43. 43Rissech, C, Sañudo, JR and Malgosa, A. 2001. ‘Short Report. The acetabular point: a morphological and ontogenetic study’. Journal of Anatomy, 198: 743748. DOI: 10.1046/j.1469-7580.2001.19860743.x
  44. 44Robinson, DL, Blackwell, PG, Stillman, EC and Brook, AH. 2002. ‘Impact of landmark reliability on the planar Procrustes analysis of tooth shape’. Archives of Oral Biology, 47: 545554. DOI: 10.1016/S0003-9969(02)00038-9
  45. 45Rubin, DB. 1976. ‘Inference and Missing Data’. Biometrika, 63: 581592. DOI: 10.1093/biomet/63.3.581
  46. 46Ruff, CB. 1993. ‘Climatic Adaptation and Hominid Evolution: The Thermoregulatory Imperative’. Evolutionary Anthropology, 2(2): 5360. DOI: 10.1002/evan.1360020207
  47. 47Schaefer, M, Black, S and Scheuer, L. 2009. Juvenile Osteology: A Laboratory and Field Manual. London: Elsevier.
  48. 48Senck, S, Bookstein, FL, Benazzi, S, Kastner, J and Weber, GW. 2015. ‘Virtual Reconstruction of Modern and Fossil Hominoid Crania: Consequences of Reference Sample Choice’. The Anatomical Record, 298: 827841. DOI: 10.1002/ar.23104
  49. 49Shott, MJ and Trail, B. 2010. ‘Exploring New Approaches to Lithic Analysis: Laser Scanning and Geometric Morphometrics’. Lithic Technology, 35: 195220. DOI: 10.1080/01977261.2010.11721090
  50. 50Standring, S. 2016. Gray’s Anatomy. The Anatomical Basis of Clinical Practice. Forty-first Edition. London: Elsevier.
  51. 51Stekhoven, DJ. 2022. missForest. Nonparametric Missing Value Imputation using Random Forest. R package version 1.5 https://cran.r-project.org/web/packages/missForest/index.html.
  52. 52Stekhoven, DJ and Bühlmann, P. 2012. ‘MissForest – non-parametric missing value imputation for mixed-type data’. Bioinformatics, 28(1): 112118. DOI: 10.1093/bioinformatics/btr597
  53. 53Tang, F and Ishwaran, H. 2017. ‘Random Forest Missing Data Algorithms’. Statistical Analysis and Data Mining, 10(6): 363377. DOI: 10.1002/sam.11348
  54. 54Thulman, DK, Shott, MJ, Slade, AM and Williams, JP. 2023. ‘Clovis point allometry, modularity, and integration: Exploring shape variation due to tool use with landmark-based geometric morphometrics’. PLoS ONE, 18(8): e0289489. DOI: 10.1371/journal.pone.0289489
  55. 55van Buuren, S. 2018. Flexible Imputation of Missing Data. Second Edition. Boca Raton: Chapman and Hall/CRC. DOI: 10.1201/9780429492259
  56. 56Warrener, A. 2023. ‘The multifactor pelvis: An alternative to the adaptationist approach of the obstetrical dilemma’. Evolutionary Anthropology, 115. DOI: 10.1002/evan.21997
  57. 57Wasiljew, BD, Pfaender, J, Wipfler, B, Utama, IV and Herder, F. 2020. ‘Do we need the third dimension? Quantifying the effect of the z-axis in 3D geometric morphometrics based on sailfin silversides (Telmatherinidae)’. Journal of Fish Biology, 97(2): 537545. DOI: 10.1111/jfb.14410
  58. 58Watanabe, A. 2018. ‘How many landmarks are enough to characterize shape and size variation?’. PLOS One, 13(6): e0198341. DOI: 10.1371/journal.pone.0198341
  59. 59Weisensee, KE and Jantz, RL. 2011. ‘Secular Changes in Craniofacial Morphology of the Portuguese Using Geometric Morphometrics’. American Journal of Physical Anthropology, 145: 548559. DOI: 10.1002/ajpa.21531
  60. 60White, TD, Black, MT and Folkens, PA. 2012. The Human Bone Manual. Third Edition. San Diego: Academic Press.
  61. 61Wigley, BR and Blackwell, PG. 2024. Getting to the Point: A 3D Digitisation Template for the Human Os Coxae. The University of Sheffield. Online resource. DOI: 10.15131/shef.data.25498276
  62. 62Wigley, BR, Stillman, EC and Craig-Atkins, E. 2024. ‘Taking Shape: A New Geometric Morphometric Approach to Quantifying Dental Fluctuating Asymmetry and its Application to the Evaluation of Developmental Stress’. Archaeometry, 66(6): 13991423. DOI: 10.1111/arcm.12973
  63. 63Zelditch, ML and Swiderski, DL. 2023. ‘Effects of Procrustes Superimposition and Semilandmark Sliding on Modularity and Integration: An Investigation Using Simulations of Biological Data’. Evolutionary Biology, 50: 147169. DOI: 10.1007/s11692-023-09600-9
  64. 64Zelditch, ML, Swiderski, DL and Sheets, HD. 2012. Geometric Morphometrics for Biologists. A Primer. London: Academic Press.
DOI: https://doi.org/10.5334/jcaa.161 | Journal eISSN: 2514-8362
Language: English
Submitted on: Apr 3, 2024
Accepted on: Mar 25, 2025
Published on: May 6, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ben R. Wigley, Paul G. Blackwell, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.