References
- 1Abou Diwan, G. 2020. ‘GIS-based comparative archaeological predictive models: a first application to Iron Age sites in the Bekaa (Lebanon).’ Mediterranean Archaeology & Archaeometry, 20(2): 143–158. DOI: 10.5281/zenodo.3819601
- 2Akgun, A, Dag, S and Bulut, F. 2008. ‘Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models.’ Environmental Geology, 54(6): 1127–1143. DOI: 10.1007/s00254-007-0882-8
- 3Aliquot, J. 2009. La vie religieuse au Liban sous l’Empire Romain. Beirut: Institut français du Proche Orient. DOI: 10.4000/books.ifpo.1411
- 4Aubry, T, Luís, L and Dimuccio, LA. 2012. ‘Nature vs. Culture: present-day spatial distribution and preservation of open-air rock art in the Côa and Douro River Valleys (Portugal).’ Journal of Archaeological Science, 39(4): 848–866. DOI: 10.1016/j.jas.2011.10.011
- 5Balla, A, Pavlogeorgatos, G, Tsiafaki, D and Pavlidis, G. 2014. ‘Efficient predictive modelling for archaeological research.’ Mediterranean Archaeology and Archaeometry, 14: 119–129.
- 6Bednarik, M, Magulová, B, Matys, M and Marschalko, M. 2010. ‘Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study.’ Physics and Chemistry of the Earth, 35(3–5): 162–171. DOI: 10.1016/j.pce.2009.12.002
- 7Boltzmann, L. 1877. ‘Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Sätzen über das Wärmegleichgewicht.’ Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, LXXVI: 373–435.
- 8Boulanger, R. 1955. Les Guides Bleus illustrés, Paris: Librairie Hachette.
- 9Brandt, SA and Hassan, F. 2000. Dams and cultural heritage management. Cape Town: World Commission on Dams.
- 10Castiello, ME and Tonini, M. 2021. ‘An Explorative Application of Random Forest Algorithm for Archaeological Predictive Modeling. A Swiss Case Study.’ Journal of Computer Applications in Archaeology, 4(1): 110–125. DOI: 10.5334/jcaa.71
- 11Clausius, R. 1865. ‘Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie.’ Annalen der Physik, 201(7): 353–400. DOI: 10.1002/andp.18652010702
- 12Constantin, M, Bednarik, M, Jurchescu, MC and Vlaicu, M. 2011. ‘Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania).’ Environmental Earth Sciences, 63(2): 397–406. DOI: 10.1007/s12665-010-0724-y
- 13Danese, M, Masini, N, Biscione, M and Lasaponara, R. 2014. ‘Predictive modeling for preventive Archaeology: overview and case study.’ Central European Journal of Geosciences, 6: 42–55. DOI: 10.2478/s13533-012-0160-5
- 14Dar Al-Handasah. 2014. Greater Beirut Water Augmentation Project Environmental and Social Impact Assessment. Lebanon: Council for Development and Reconstruction.
- 15Darwish, T, Khawlie, M, Daher, M, Jomaa, I, Awad, M, Masri, T, Shaban, A, Faour, G, Abdallah, C and Kheir, R. 2006. Soil Map of Lebanon 1:50000. Lebanon: National Council for Scientific Research.
- 16De Reu, J, Bourgeois, J, De Smedt, P, Zwertvaegher, A, Antrop, M, Bats, M, De Maeyer, P, Finke, P, Van Meirvenne, M and Verniers, J. 2011. ‘Measuring the relative topographic position of archaeological sites in the landscape, a case study on the Bronze Age barrows in northwest Belgium.’ Journal of Archaeological Science, 38(12): 3435–3446. DOI: 10.1016/j.jas.2011.08.005
- 17Dubertret, L. 1955. Carte géologique du Liban. Lebanon: Ministère des travaux publics.
- 18Esri 2024.
ArcGIS Pro 3.4.0 . Redlands, CA: Environmental Systems Research Institute. - 19FAO 1990. Land cover map of Lebanon. Scale 1/50000. Beirut/Rome: FAO.
- 20Garrad, H. 2011. The National wind atlas of Lebanon. Beirut: UNDP/CEDRO.
- 21Graves, D. 2011. ‘The use of predictive modelling to target Neolithic settlement and occupation activity in mainland Scotland.’ Journal of Archaeological Science, 38(3): 633–656. DOI: 10.1016/j.jas.2010.10.016
- 22Haghizadeh, A, Siahkamari, S, Haghiabi, AH and Rahmati, O. 2017. ‘Forecasting flood-prone areas using Shannon’s entropy model.’ Journal of Earth System Science, 126(3): 39. DOI: 10.1007/s12040-017-0819-x
- 23Heilen, M, Leckman, P, Byrd, A, Homburg, JA and Heckman, R. 2013.
‘Archaeological Sensitivity Modeling in Southern New Mexico: Automated Tools and Models for Planning and Management.’ Albuquerque, NM: Statistical Research, Inc. - 24Jakubiak, K. 2011. ‘Eshmoun Valley preliminary report after the third season of the Polish–Lebanese survey.’ Polish Archaeology in the Mediterranean, XX: 295–301.
- 25Jakubiak, K and Neska, M. 2005. ‘Eshmoun valley: The Eshmoun valley survey, 2004, interim report.’ Polish Archaeology in the Mediterranean, XVI: 441–446.
- 26Jakubiak, K and Neska, M. 2007. ‘Eshmoun Valley: preliminary report on the second season of the survey, 2005.’ Polish Archaeology in the Mediterranean, XVII: 431–436.
- 27JAXA n.d. ALOS – Advanced Land Observing Satellite. Available at:
https://www.eorc.jaxa.jp/ALOS/en/index_e.htm [Lastaccessed: May 9, 2024]. - 28Kamermans, H and Wansleeben, M. 1999.
‘Predictive modelling in Dutch archaeology, joining forces.’ In: Barceló, JA, Briz, I and Vila, A (eds.) New Techniques for Old Times – CAA98. Computer Applications and Quantitative Methods in Archaeology. Oxford: BAR, pp. 225–230. - 29Khalil, W. 2009.
‘Prospection dans le Liban méridional: étude du développement de la zone montagneuse de l’époque hellénistique à la fin de l’époque médiévale, 323 av. J.C.–1516 ap. J.C.’ Unpublished thesis, Université Paris 1 Panthéon-Sorbonne. - 30Khalil, W. 2015.
‘L’occupation et le Réseau routier dans le Mont Liban entre l’époque hellénistique et l’époque mamelouke: l’exemple du Haut Chouf.’ In: Harfouche, R and Poupet, P (eds.) Du Mont Liban aux Sierras d’Espagne. Sols, eaux et sociétés en montagne. Atour du projet franco-libanais CEDRE “Nahr Ibrahim”. Oxford: Archaeopress, pp. 27–38. DOI: 10.2307/j.ctvr43khf.5 - 31Kohavi, R. 1995. ‘A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.’ In: IJCAI’95: Proceedings of the 14th International Joint Conference on Artificial Intelligence – Volume 2. San Francisco:
Morgan Kaufman Publishing , pp. 1137–1143. - 32Kvamme, KL. 1988.
‘Development and testing of Quantitative models.’ In: Judge, W and Sebastian, L (eds.) Quantifying the Present and Predicting the Past: Theory, Method and Application of Archaeological Predictive Modelling. Denver: Bureau of Land Management, pp. 325–428. - 33Kvamme, KL. 1990. ‘One-sample tests in regional archaeological analysis: new possibilities through computer technology.’ American Antiquity, 55(2): 367–381. DOI: 10.2307/281655
- 34Kvamme, KL. 2005.
‘There and Back Again: Revisiting Archaeological Locational Modeling.’ In: Mehrer, MW and Wescott, KL (eds.) GIS and Archaeological Site Location Modeling. Boca Raton: CRC Press, pp. 23–55. DOI: 10.1201/9780203563359.sec1 - 35Lee, S and Talib, JA. 2005. ‘Probabilistic landslide susceptibility and factor effect analysis.’ Environmental Geology, 47(7): 982–990. DOI: 10.1007/s00254-005-1228-z
- 36Mezughi, TH, Akhir, JM, Rafek, AG and Abdullah, I. 2011. ‘Landslide Susceptibility Assessment using Frequency Ratio Model Applied to an Area along the E-W Highway (Gerik-Jeli).’ American Journal of Environmental Sciences, 7(1): 43–50. DOI: 10.3844/ajessp.2011.43.50
- 37Mink, PB, Ripy, J, Bailey, K and Grossardt, TH. 2009. Predictive Archaeological Modeling using GIS-Based Fuzzy Set Estimation: A Case Study in Woodford County, Kentucky. Lexington: Kentucky Transportation Center Faculty and Researcher Publications.
- 38Nicu, IC, Mihu-Pintilie, A and Williamson, J. 2019. ‘GIS-Based and Statistical Approaches in Archaeological Predictive Modelling (NE Romania).’ Sustainability, 11(21): 59–69. DOI: 10.3390/su11215969
- 39Nohani, E, Moharrami, M, Sharafi, S, Khosravi, K, Pradhan, B, Pham, BT, Lee, S and Melesse, MA. 2019. ‘Landslide susceptibility mapping using different GIS-based bivariate models.’ Water Resources, 11(7): 1402. DOI: 10.3390/w11071402
- 40Nsanziyera, A, Rhinane, H, Oujaa, A and Mubea, K. 2018. ‘GIS and Remote-Sensing Application in Archaeological Site Mapping in the Awsard Area (Morocco).’ Geosciences, 8(6): 207. DOI: 10.3390/geosciences8060207
- 41Perakis, KG and Moysiadis, AK. 2011. ‘Geospatial predictive modelling of the Neolithic archaeological sites of Magnesia in Greece.’ International Journal of Digital Earth, 4(5): 421–433. DOI: 10.1080/17538947.2011.576778
- 42Pourghasemi, HR, Mohammady, M and Pradhan, B. 2012. ‘Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran.’ Catena, 97: 71–84. DOI: 10.1016/j.catena.2012.05.005
- 43Roodposhti, MS, Aryal, J, Shahabi, H and Safarrad, T. 2016. ‘Fuzzy Shannon entropy: A hybrid GIS-based landslide susceptibility mapping method.’ Entropy, 18(10): 343. DOI: 10.3390/e18100343
- 44Service météorologique du Liban 1977. Atlas climatique du Liban Tome 1, (Pluie, température, pression, nébulosité). Cahiers I-A, I-B. Beirut: Service météorologique du Liban.
- 45Service météorologique du Liban 1982. Atlas climatique du Liban Tome 2, (Humidité atmosphérique, rayonnement solaire, statistiques diverses de fréquence) Cahiers 2-A, 2-B. Beirut: Service météorologique du Liban.
- 46Shannon, CE. 1948. ‘A mathematical theory of communication.’ The Bell System Technical Journal, 27(3): 379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
- 47Silalahi, FES, Arifianti, Y and Hidayat, FJGL. 2019. ‘Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia.’ Geoscience Letters, 6(1): 1–17. DOI: 10.1186/s40562-019-0140-4
- 48Tallon, M. 1967. ‘Sanctuaires et itinéraires romains du Chouf et du sud de la Beqaa.’ Mélanges de l’Université Saint-Joseph, 43: 231–251. DOI: 10.3406/mefao.1967.1171
- 49Tang, G. 2000. A Research on the Accuracy of Digital Elevation Models. New York: Science Press Beijing.
- 50Thomas, DH. 1986. Refiguring Anthropology: First Principles of Probability & Statistics. Prospect Heights, IL: Waveland Press.
- 51Tobler, W. 1993. Three presentations on geographical analysis and modeling. Santa Barbara, CA: National Center for Geographic Information and Analysis.
- 52Tripcevich, N. 2009. Workshop 2009, No. 1- Viewshed and Cost Distance Working with Archaeological data in Arcmap 9.2: A brief tour of Viewshed and Cost distance functions, Date. Available at:
http://mapaspects.org/book/export/html/3743 [Last accessed 22 January 2025]. - 53UNESCO 1972. Convention Concerning the Protection of the World Cultural and Natural Heritage. UNESCO World Heritage.
- 54Van Leusen, M, Deeben, J, Hallewas, D, Zoetbrood, P, Kamermans, H and Verhagen, P. 2005.
‘A baseline for predictive modelling in the Netherlands.’ In: Van Leusen, M and Kamermans, H (eds.) Predictive modelling for archaeological heritage management: A research agenda. Amersfoort: ROB, pp. 25–92. - 55Verhagen, P. 2007. Case studies in archaeological predictive modelling. Leiden: Leiden University Press. DOI: 10.5117/9789087280079
- 56Verhagen, P, Kamermans, H, Van Leusen, M, Deeben, J, Hallewas, D and Zoetbrood, P. 2010. ‘First thoughts on the incorporation of cultural variables into predictive modelling.’ In: Nicolucci, F and Hermon, S (eds.) Beyond the Artifact. Digital Interpretation of the Past. Proceedings of CAA, Prato
13–17 April 2004 . pp. Budapest:Archeolingua , pp. 307–311. - 57Verhagen, P, Nuninger, L, Tourneux, F-P, Bertoncello, F and Jeneson, K. 2012. ‘Introducing the human factor in predictive modelling: a work in progress.’ In: Earl, G, Sly, T, Chrysanthi, A, Murrieta-Flores, P, Papadopoulos, C, Romanowska I and Wheatley, D (eds.) Archaeology in the digital era. Papers from the 40th annual conference of computer applications and quantitative methods in archaeology (CAA), Southampton. Amsterdam:
Amsterdam University Press , pp. 379–388. - 58Verhagen, P and Whitley, T. 2020.
‘Predictive spatial modelling.’ In: Gillings, M, Hacıgüzeller, P and Lock, G (eds.) Archaeological Spatial Analysis: A Methodological Guide. London: Routledge, pp. 231–246. DOI: 10.4324/9781351243858-13 - 59Vlcko, J, Wagner, P and Rychlikova, Z. 1980. ‘Evaluation of regional slope stability.’ Mineralia Slovaca, 12(3): 275–283.
- 60Walker, RS, Ferguson, JR, Olmeda, A, Hamilton, MJ, Elghammer, J and Buchanan, B. 2023. ‘Predicting the geographic distribution of ancient Amazonian archaeological sites with machine learning.’ PeerJ, 11:
e15137 . DOI: 10.7717/peerj.15137 - 61Wang, Y, Shi, X and Oguchi, T. 2023. ‘Archaeological predictive modeling using machine learning and statistical methods for Japan and China.’ ISPRS International Journal of Geo-Information, 12(6): 238. DOI: 10.3390/ijgi12060238
- 62Weiss, AD. 2001. ‘Topographic position and landforms analysis.’ Poster presentation, ESRI user conference, San Diego, CA.
- 63Wheatley, D. 1995.
‘Cumulative viewshed analysis: a GIS-based method for investigating intervisibility, and its archaeological application.’ In: Lock, G and Stančić, Z (eds.) Archaeology and geographical information systems: a European perspective. London: Taylor & Francis, pp. 171–185. DOI: 10.1201/9780367810467-13 - 64Wilson, JP and Gallant, JC. 2000.
‘Primary Topographic Attributes.’ In: Wilson, JP and Gallant, JC (eds.) Terrain Analysis: Principles and Applications. New York: John Wiley & Sons, pp. 51–85. - 65Yang, Z and Qiao, J. 2010. ‘Regional landslide zonation based on entropy method in Three Gorges area, China.’ In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China.
IEEE , pp. 1336–1339. DOI: 10.1109/FSKD.2010.5569097 - 66Yufeng, S and Fengxiang, J. 2009. ‘Landslide stability analysis based on generalized information entropy.’ In: 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China.
IEEE , pp. 83–85. DOI: 10.1109/ESIAT.2009.258
