Have a personal or library account? Click to login
Probabilistic Models for Predicting Archaeological Site Locations in Marj Bisri (Southern Lebanon): Comparing Frequency Ratio and Shannon’s Entropy Cover

Probabilistic Models for Predicting Archaeological Site Locations in Marj Bisri (Southern Lebanon): Comparing Frequency Ratio and Shannon’s Entropy

Open Access
|Feb 2025

References

  1. 1Abou Diwan, G. 2020. ‘GIS-based comparative archaeological predictive models: a first application to Iron Age sites in the Bekaa (Lebanon).’ Mediterranean Archaeology & Archaeometry, 20(2): 143158. DOI: 10.5281/zenodo.3819601
  2. 2Akgun, A, Dag, S and Bulut, F. 2008. ‘Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models.’ Environmental Geology, 54(6): 11271143. DOI: 10.1007/s00254-007-0882-8
  3. 3Aliquot, J. 2009. La vie religieuse au Liban sous l’Empire Romain. Beirut: Institut français du Proche Orient. DOI: 10.4000/books.ifpo.1411
  4. 4Aubry, T, Luís, L and Dimuccio, LA. 2012. ‘Nature vs. Culture: present-day spatial distribution and preservation of open-air rock art in the Côa and Douro River Valleys (Portugal).’ Journal of Archaeological Science, 39(4): 848866. DOI: 10.1016/j.jas.2011.10.011
  5. 5Balla, A, Pavlogeorgatos, G, Tsiafaki, D and Pavlidis, G. 2014. ‘Efficient predictive modelling for archaeological research.’ Mediterranean Archaeology and Archaeometry, 14: 119129.
  6. 6Bednarik, M, Magulová, B, Matys, M and Marschalko, M. 2010. ‘Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study.’ Physics and Chemistry of the Earth, 35(3–5): 162171. DOI: 10.1016/j.pce.2009.12.002
  7. 7Boltzmann, L. 1877. ‘Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Sätzen über das Wärmegleichgewicht.’ Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, LXXVI: 373435.
  8. 8Boulanger, R. 1955. Les Guides Bleus illustrés, Paris: Librairie Hachette.
  9. 9Brandt, SA and Hassan, F. 2000. Dams and cultural heritage management. Cape Town: World Commission on Dams.
  10. 10Castiello, ME and Tonini, M. 2021. ‘An Explorative Application of Random Forest Algorithm for Archaeological Predictive Modeling. A Swiss Case Study.’ Journal of Computer Applications in Archaeology, 4(1): 110125. DOI: 10.5334/jcaa.71
  11. 11Clausius, R. 1865. ‘Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie.’ Annalen der Physik, 201(7): 353400. DOI: 10.1002/andp.18652010702
  12. 12Constantin, M, Bednarik, M, Jurchescu, MC and Vlaicu, M. 2011. ‘Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania).’ Environmental Earth Sciences, 63(2): 397406. DOI: 10.1007/s12665-010-0724-y
  13. 13Danese, M, Masini, N, Biscione, M and Lasaponara, R. 2014. ‘Predictive modeling for preventive Archaeology: overview and case study.’ Central European Journal of Geosciences, 6: 4255. DOI: 10.2478/s13533-012-0160-5
  14. 14Dar Al-Handasah. 2014. Greater Beirut Water Augmentation Project Environmental and Social Impact Assessment. Lebanon: Council for Development and Reconstruction.
  15. 15Darwish, T, Khawlie, M, Daher, M, Jomaa, I, Awad, M, Masri, T, Shaban, A, Faour, G, Abdallah, C and Kheir, R. 2006. Soil Map of Lebanon 1:50000. Lebanon: National Council for Scientific Research.
  16. 16De Reu, J, Bourgeois, J, De Smedt, P, Zwertvaegher, A, Antrop, M, Bats, M, De Maeyer, P, Finke, P, Van Meirvenne, M and Verniers, J. 2011. ‘Measuring the relative topographic position of archaeological sites in the landscape, a case study on the Bronze Age barrows in northwest Belgium.’ Journal of Archaeological Science, 38(12): 34353446. DOI: 10.1016/j.jas.2011.08.005
  17. 17Dubertret, L. 1955. Carte géologique du Liban. Lebanon: Ministère des travaux publics.
  18. 18Esri 2024. ArcGIS Pro 3.4.0. Redlands, CA: Environmental Systems Research Institute.
  19. 19FAO 1990. Land cover map of Lebanon. Scale 1/50000. Beirut/Rome: FAO.
  20. 20Garrad, H. 2011. The National wind atlas of Lebanon. Beirut: UNDP/CEDRO.
  21. 21Graves, D. 2011. ‘The use of predictive modelling to target Neolithic settlement and occupation activity in mainland Scotland.’ Journal of Archaeological Science, 38(3): 633656. DOI: 10.1016/j.jas.2010.10.016
  22. 22Haghizadeh, A, Siahkamari, S, Haghiabi, AH and Rahmati, O. 2017. ‘Forecasting flood-prone areas using Shannon’s entropy model.’ Journal of Earth System Science, 126(3): 39. DOI: 10.1007/s12040-017-0819-x
  23. 23Heilen, M, Leckman, P, Byrd, A, Homburg, JA and Heckman, R. 2013. ‘Archaeological Sensitivity Modeling in Southern New Mexico: Automated Tools and Models for Planning and Management.’ Albuquerque, NM: Statistical Research, Inc.
  24. 24Jakubiak, K. 2011. ‘Eshmoun Valley preliminary report after the third season of the Polish–Lebanese survey.’ Polish Archaeology in the Mediterranean, XX: 295301.
  25. 25Jakubiak, K and Neska, M. 2005. ‘Eshmoun valley: The Eshmoun valley survey, 2004, interim report.’ Polish Archaeology in the Mediterranean, XVI: 441446.
  26. 26Jakubiak, K and Neska, M. 2007. ‘Eshmoun Valley: preliminary report on the second season of the survey, 2005.’ Polish Archaeology in the Mediterranean, XVII: 431436.
  27. 27JAXA n.d. ALOS – Advanced Land Observing Satellite. Available at: https://www.eorc.jaxa.jp/ALOS/en/index_e.htm [Lastaccessed: May 9, 2024].
  28. 28Kamermans, H and Wansleeben, M. 1999. ‘Predictive modelling in Dutch archaeology, joining forces.’ In: Barceló, JA, Briz, I and Vila, A (eds.) New Techniques for Old Times – CAA98. Computer Applications and Quantitative Methods in Archaeology. Oxford: BAR, pp. 225230.
  29. 29Khalil, W. 2009. ‘Prospection dans le Liban méridional: étude du développement de la zone montagneuse de l’époque hellénistique à la fin de l’époque médiévale, 323 av. J.C.–1516 ap. J.C.’ Unpublished thesis, Université Paris 1 Panthéon-Sorbonne.
  30. 30Khalil, W. 2015. ‘L’occupation et le Réseau routier dans le Mont Liban entre l’époque hellénistique et l’époque mamelouke: l’exemple du Haut Chouf.’ In: Harfouche, R and Poupet, P (eds.) Du Mont Liban aux Sierras d’Espagne. Sols, eaux et sociétés en montagne. Atour du projet franco-libanais CEDRE “Nahr Ibrahim”. Oxford: Archaeopress, pp. 2738. DOI: 10.2307/j.ctvr43khf.5
  31. 31Kohavi, R. 1995. ‘A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.’ In: IJCAI’95: Proceedings of the 14th International Joint Conference on Artificial Intelligence – Volume 2. San Francisco: Morgan Kaufman Publishing, pp. 11371143.
  32. 32Kvamme, KL. 1988. ‘Development and testing of Quantitative models.’ In: Judge, W and Sebastian, L (eds.) Quantifying the Present and Predicting the Past: Theory, Method and Application of Archaeological Predictive Modelling. Denver: Bureau of Land Management, pp. 325428.
  33. 33Kvamme, KL. 1990. ‘One-sample tests in regional archaeological analysis: new possibilities through computer technology.’ American Antiquity, 55(2): 367381. DOI: 10.2307/281655
  34. 34Kvamme, KL. 2005. ‘There and Back Again: Revisiting Archaeological Locational Modeling.’ In: Mehrer, MW and Wescott, KL (eds.) GIS and Archaeological Site Location Modeling. Boca Raton: CRC Press, pp. 2355. DOI: 10.1201/9780203563359.sec1
  35. 35Lee, S and Talib, JA. 2005. ‘Probabilistic landslide susceptibility and factor effect analysis.’ Environmental Geology, 47(7): 982990. DOI: 10.1007/s00254-005-1228-z
  36. 36Mezughi, TH, Akhir, JM, Rafek, AG and Abdullah, I. 2011. ‘Landslide Susceptibility Assessment using Frequency Ratio Model Applied to an Area along the E-W Highway (Gerik-Jeli).’ American Journal of Environmental Sciences, 7(1): 4350. DOI: 10.3844/ajessp.2011.43.50
  37. 37Mink, PB, Ripy, J, Bailey, K and Grossardt, TH. 2009. Predictive Archaeological Modeling using GIS-Based Fuzzy Set Estimation: A Case Study in Woodford County, Kentucky. Lexington: Kentucky Transportation Center Faculty and Researcher Publications.
  38. 38Nicu, IC, Mihu-Pintilie, A and Williamson, J. 2019. ‘GIS-Based and Statistical Approaches in Archaeological Predictive Modelling (NE Romania).’ Sustainability, 11(21): 5969. DOI: 10.3390/su11215969
  39. 39Nohani, E, Moharrami, M, Sharafi, S, Khosravi, K, Pradhan, B, Pham, BT, Lee, S and Melesse, MA. 2019. ‘Landslide susceptibility mapping using different GIS-based bivariate models.’ Water Resources, 11(7): 1402. DOI: 10.3390/w11071402
  40. 40Nsanziyera, A, Rhinane, H, Oujaa, A and Mubea, K. 2018. ‘GIS and Remote-Sensing Application in Archaeological Site Mapping in the Awsard Area (Morocco).’ Geosciences, 8(6): 207. DOI: 10.3390/geosciences8060207
  41. 41Perakis, KG and Moysiadis, AK. 2011. ‘Geospatial predictive modelling of the Neolithic archaeological sites of Magnesia in Greece.’ International Journal of Digital Earth, 4(5): 421433. DOI: 10.1080/17538947.2011.576778
  42. 42Pourghasemi, HR, Mohammady, M and Pradhan, B. 2012. ‘Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran.’ Catena, 97: 7184. DOI: 10.1016/j.catena.2012.05.005
  43. 43Roodposhti, MS, Aryal, J, Shahabi, H and Safarrad, T. 2016. ‘Fuzzy Shannon entropy: A hybrid GIS-based landslide susceptibility mapping method.’ Entropy, 18(10): 343. DOI: 10.3390/e18100343
  44. 44Service météorologique du Liban 1977. Atlas climatique du Liban Tome 1, (Pluie, température, pression, nébulosité). Cahiers I-A, I-B. Beirut: Service météorologique du Liban.
  45. 45Service météorologique du Liban 1982. Atlas climatique du Liban Tome 2, (Humidité atmosphérique, rayonnement solaire, statistiques diverses de fréquence) Cahiers 2-A, 2-B. Beirut: Service météorologique du Liban.
  46. 46Shannon, CE. 1948. ‘A mathematical theory of communication.’ The Bell System Technical Journal, 27(3): 379423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
  47. 47Silalahi, FES, Arifianti, Y and Hidayat, FJGL. 2019. ‘Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia.’ Geoscience Letters, 6(1): 117. DOI: 10.1186/s40562-019-0140-4
  48. 48Tallon, M. 1967. ‘Sanctuaires et itinéraires romains du Chouf et du sud de la Beqaa.’ Mélanges de l’Université Saint-Joseph, 43: 231251. DOI: 10.3406/mefao.1967.1171
  49. 49Tang, G. 2000. A Research on the Accuracy of Digital Elevation Models. New York: Science Press Beijing.
  50. 50Thomas, DH. 1986. Refiguring Anthropology: First Principles of Probability & Statistics. Prospect Heights, IL: Waveland Press.
  51. 51Tobler, W. 1993. Three presentations on geographical analysis and modeling. Santa Barbara, CA: National Center for Geographic Information and Analysis.
  52. 52Tripcevich, N. 2009. Workshop 2009, No. 1- Viewshed and Cost Distance Working with Archaeological data in Arcmap 9.2: A brief tour of Viewshed and Cost distance functions, Date. Available at: http://mapaspects.org/book/export/html/3743 [Last accessed 22 January 2025].
  53. 53UNESCO 1972. Convention Concerning the Protection of the World Cultural and Natural Heritage. UNESCO World Heritage.
  54. 54Van Leusen, M, Deeben, J, Hallewas, D, Zoetbrood, P, Kamermans, H and Verhagen, P. 2005. ‘A baseline for predictive modelling in the Netherlands.’ In: Van Leusen, M and Kamermans, H (eds.) Predictive modelling for archaeological heritage management: A research agenda. Amersfoort: ROB, pp. 2592.
  55. 55Verhagen, P. 2007. Case studies in archaeological predictive modelling. Leiden: Leiden University Press. DOI: 10.5117/9789087280079
  56. 56Verhagen, P, Kamermans, H, Van Leusen, M, Deeben, J, Hallewas, D and Zoetbrood, P. 2010. ‘First thoughts on the incorporation of cultural variables into predictive modelling.’ In: Nicolucci, F and Hermon, S (eds.) Beyond the Artifact. Digital Interpretation of the Past. Proceedings of CAA, Prato 13–17 April 2004. pp. Budapest: Archeolingua, pp. 307311.
  57. 57Verhagen, P, Nuninger, L, Tourneux, F-P, Bertoncello, F and Jeneson, K. 2012. ‘Introducing the human factor in predictive modelling: a work in progress.’ In: Earl, G, Sly, T, Chrysanthi, A, Murrieta-Flores, P, Papadopoulos, C, Romanowska I and Wheatley, D (eds.) Archaeology in the digital era. Papers from the 40th annual conference of computer applications and quantitative methods in archaeology (CAA), Southampton. Amsterdam: Amsterdam University Press, pp. 379388.
  58. 58Verhagen, P and Whitley, T. 2020. ‘Predictive spatial modelling.’ In: Gillings, M, Hacıgüzeller, P and Lock, G (eds.) Archaeological Spatial Analysis: A Methodological Guide. London: Routledge, pp. 231246. DOI: 10.4324/9781351243858-13
  59. 59Vlcko, J, Wagner, P and Rychlikova, Z. 1980. ‘Evaluation of regional slope stability.’ Mineralia Slovaca, 12(3): 275283.
  60. 60Walker, RS, Ferguson, JR, Olmeda, A, Hamilton, MJ, Elghammer, J and Buchanan, B. 2023. ‘Predicting the geographic distribution of ancient Amazonian archaeological sites with machine learning.’ PeerJ, 11: e15137. DOI: 10.7717/peerj.15137
  61. 61Wang, Y, Shi, X and Oguchi, T. 2023. ‘Archaeological predictive modeling using machine learning and statistical methods for Japan and China.’ ISPRS International Journal of Geo-Information, 12(6): 238. DOI: 10.3390/ijgi12060238
  62. 62Weiss, AD. 2001. ‘Topographic position and landforms analysis.’ Poster presentation, ESRI user conference, San Diego, CA.
  63. 63Wheatley, D. 1995. ‘Cumulative viewshed analysis: a GIS-based method for investigating intervisibility, and its archaeological application.’ In: Lock, G and Stančić, Z (eds.) Archaeology and geographical information systems: a European perspective. London: Taylor & Francis, pp. 171185. DOI: 10.1201/9780367810467-13
  64. 64Wilson, JP and Gallant, JC. 2000. ‘Primary Topographic Attributes.’ In: Wilson, JP and Gallant, JC (eds.) Terrain Analysis: Principles and Applications. New York: John Wiley & Sons, pp. 5185.
  65. 65Yang, Z and Qiao, J. 2010. ‘Regional landslide zonation based on entropy method in Three Gorges area, China.’ In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China. IEEE, pp. 13361339. DOI: 10.1109/FSKD.2010.5569097
  66. 66Yufeng, S and Fengxiang, J. 2009. ‘Landslide stability analysis based on generalized information entropy.’ In: 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China. IEEE, pp. 8385. DOI: 10.1109/ESIAT.2009.258
DOI: https://doi.org/10.5334/jcaa.150 | Journal eISSN: 2514-8362
Language: English
Submitted on: Feb 2, 2024
Accepted on: Jan 12, 2025
Published on: Feb 5, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Georges Abou Diwan, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.