Have a personal or library account? Click to login
Using Generative AI for Reconstructing Cultural Artifacts: Examples Using Roman Coins Cover

Using Generative AI for Reconstructing Cultural Artifacts: Examples Using Roman Coins

Open Access
|Sep 2024

References

  1. 1Aggarwal, A, Mittal, M and Battineni, G. 2021. ‘Generative adversarial network: An overview of theory and applications.’ International Journal of Information Management Data Insights, 1(1): 100004. DOI: 10.1016/j.jjimei.2020.100004
  2. 2American Numismatic Society. 2023a. ‘American numismatic society.’ https://numismatics.org/ [Accessed: (December 06, 2023)].
  3. 3American Numismatic Society. 2023b. ‘Online coins of the roman empire.’ https://numismatics.org/ocre/, [Accessed: (September 06, 2023)].
  4. 4ArcGIS. 2023. ‘How cyclegan works?’ https://developers.arcgis.com/python/guide/how-cyclegan-works/ [Accessed: (December 18, 2023)].
  5. 5Berlin, M. 2023. ‘Münzkabinett online catalogue.’ https://ikmk.smb.museum/home, [Accessed: (September 06, 2023)].
  6. 6Borji, A. 2019. ‘Pros and cons of gan evaluation measures.’ Computer Vision and Image Understanding, 179: 4165. DOI: 10.1016/j.cviu.2018.10.009
  7. 7British Museum. 2023. ‘British museum collections.’ https://www.britishmuseum.org/collection [Accessed: (September 06, 2023)].
  8. 8Bruno, F, Bruno, S, De Seni, G, Luchi, ML, Mancuso, S and Muzzupappa, M. 2010. ‘From 3d reconstruction to virtual reality: A complete methodology for digital archaeological exhibition.’ Journal of Cultural Heritage, 11(1): 4249. DOI: 10.1016/j.culher.2009.02.006
  9. 9Chang, X, Chao, F, Shang, C and Shen, Q. 2022. ‘Sundial-gan: A cascade generative adversarial networks framework for deciphering oracle bone inscriptions.’ In: Proceedings of the 30th ACM International Conference on Multimedia, Lisboa Portugal, ACM, 10 October 2022, pp. 11951203. DOI: 10.1145/3503161.3547925
  10. 10Choi, S-Y, Jeong, H-J, Park, K-S and Ha, Y-G. 2019. ‘Efficient driving scene image creation using deep neural network.’ In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, IEEE, February 2019, pp. 14. DOI: 10.1109/BIGCOMP.2019.8679269
  11. 11Colmenero-Fernández, A and Feito, F. 2021. ‘Image processing for graphic normalisation of the ceramic profile in archaeological sketches making use of deep neuronal net (dnn).’ Digital Applications in Archaeology and Cultural Heritage, 22: e00196. DOI: 10.1016/j.daach.2021.e00196
  12. 12Farahanipad, F, Rezaei, M, Nasr, MS, Kamangar, F and Athitsos, V. 2022. ‘A survey on gan-based data augmentation for hand pose estimation problem.’ Technologies, 10(2): 43. DOI: 10.3390/technologies10020043
  13. 13Garozzo, R, Santagati, C, Spampinato, C and Vecchio, G. 2021. ‘Knowledge-based generative adversarial networks for scene understanding in cultural heritage.’ Journal of Archaeological Science: Reports, 35: 102736. DOI: 10.1016/j.jasrep.2020.102736
  14. 14Ghosh, B, Dutta, IK, Carlson, A, Totaro, M and Bayoumi, M. 2020. ‘An empirical analysis of generative adversarial network training times with varying batch sizess.’ In: 2020 11th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), IEEE, pp. 643648. DOI: 10.1109/UEMCON51285.2020.9298092
  15. 15Gonog, L and Zhou, Y. 2019. ‘A review: Generative adversarial networks.’ In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, IEEE, June 2019, pp. 505510. DOI: 10.1109/ICIEA.2019.8833686
  16. 16Goodfellow, I, Pouget-Abadie, J, Mirza, M, Xu, B, Warde-Farley, D, Ozair, S, Courville, A and Bengio, Y. 2014. ‘Generative adversarial nets.’ In: Advances in neural information processing systems, MIT Press, pp. 26722680.
  17. 17Gragnaniello, D, Cozzolino, D, Marra, F, Poggi, G and Verdoliva, L. 2021. ‘Are gan generated images easy to detect? a critical analysis of the state-of-the-art.’ In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 16. DOI: 10.1109/ICME51207.2021.9428429
  18. 18Harms, J, Lei, Y, Wang, T, Zhang, R, Zhou, J, Tang, X, Curran, W, Liu, T and Yang, X. 2019. ‘Paired cycle-gan-based image correction for quantitative cone-beam computed tomography.’ Medical Physics, 46: 39984009. DOI: 10.1002/mp.13656
  19. 19Hedjazi, MA and Genc, Y. 2021. ‘Efficient texture-aware multi-gan for image inpainting.’ Knowledge-Based Systems, 217: 106789. DOI: 10.1016/j.knosys.2021.106789
  20. 20Hermoza, R and Sipiran, I. 2018a. ‘3d reconstruction of incomplete archaeological objects using a generative adversarial network.’ In: Proceedings of Computer Graphics International 2018, CGI 2018, New York, NY, USA, Association for Computing Machinery, p. 511. DOI: 10.1145/3208159.3208173
  21. 21Hermoza, R and Sipiran, I. 2018b. ‘3d reconstruction of incomplete archaeological objects using a generative adversarial network.’ In: Proceedings of Computer Graphics International 2018, Bintan Island Indonesia, ACM, 11 June 2018, pp. 511. DOI: 10.1145/3208159.3208173
  22. 22Jiang, Z and Sweetser, P. 2022. ‘Gan-assisted yuv pixel art generation.’ In: Long, G, Yu, X and Wang, S (eds.) AI 2021: Advances in Artificial Intelligence. Lecture Notes in Computer Science. Springer International Publishing, pp. 595606. DOI: 10.1007/978-3-030-97546-3_48
  23. 23Kleber, F and Sablatnig, R. 2009. ‘A survey of techniques for document and archaeology artefact reconstruction.’ In: 10th International Conference on Document Analysis and Recognition, Barcelona, Spain, 2009, IEEE, pp. 10611065. DOI: 10.1109/ICDAR.2009.154
  24. 24Kniaz, V, Remondino, F and Knyaz, VA. 2019. ‘Gnerative adversarial networks for single photo 3d reconstruction.’ The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2): 403408. DOI: 10.5194/isprs-archives-XLII-2-W9-403-2019
  25. 25Koutsoudis, A, Vidmar, B and Arnaoutoglou, F. 2013. ‘Performance evaluation of a multi-image 3d reconstruction software on a low-feature artefact.’ Journal of Archaeological Science, 40(12): 44504456. DOI: 10.1016/j.jas.2013.07.007
  26. 26Kunsthistorisches Museum Wien. 2023. ‘Kunsthistorisches museum wien.’ https://www.ikmk.at/home?lang=en [Accessed: (September 06, 2023)].
  27. 27Kurach, K, Lučić, M, Zhai, X, Michalski, M and Gelly, S. 2019. ‘A large-scale study on regularization and normalization in GANs.’ In: Chaudhuri, K and Salakhutdinov, R (eds.) Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, PMLR, pp. 35813590.
  28. 28Langr, J and Bok, V. 2015. GANs in Action: Deep Learning with Generative Adversarial Networks. Shelter Island, New York: Manning Publications.
  29. 29LeCun, Y, Bengio, Y and Hinton, G. 2015. ‘Deep learning.’ Nature, 521(7553): 436444. DOI: 10.1038/nature14539
  30. 30Lee, K-H and Yun, GJ. 2024. ‘Microstructure reconstruction using diffusion-based generative models.’ Mechanics of Advanced Materials and Structures, 31(18): 44434461. DOI: 10.1080/15376494.2023.2198528
  31. 31Moreno-Barea, FJ, Jerez, JM and Franco, L. 2020. ‘Improving classification accuracy using data augmentation on small data sets.’ Expert Systems with Applications, 161: 113696. DOI: 10.1016/j.eswa.2020.113696
  32. 32Münster, S, Maiwald, F, Di Lenardo, I, Henriksson, J, Isaac, A, Graf, MM, Beck, C and Oomen, J. 2024. ‘Artificial intelligence for digital heritage innovation: Setting up a r&d agenda for europe.’ Heritage, 7(2): 794816. DOI: 10.3390/heritage7020038
  33. 33Navarro, P, Cintas, C, Lucena, M, Fuertes, JM, Segura, R, Delrieux, C and González-José, R. 2022. ‘Reconstruction of iberian ceramic potteries using generative adversarial networks.’ Scientific Reports, 12(1): 10644.
  34. 34Nomisma. 2024. Nomisma.org.’ http://nomisma.org/, [Accessed: (February 27, 2024)]. DOI: 10.1038/s41598-022-14910-7
  35. 35Park, S, Kim, J, Park, J, Jung, S-H and Sim, C. 2023. ‘How to train your pre-trained gan models.’ Applied Intelligence, 53(22): 2700126. DOI: 10.1007/s10489-023-04807-x
  36. 36Parmar, G, Zhang, R and Zhu, J-Y. 2022. ‘On aliased resizing and surprising subtleties in gan evaluation.’ In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 1141020. DOI: 10.1109/CVPR52688.2022.01112
  37. 37Portable Antiquities Scheme. 2023. ‘Portable antiquities scheme.’ https://finds.org.uk/database/search/results/ [Accessed: (September 06, 2023)].
  38. 38Tang, S. 2020. ‘Lessons learned from the training of gans on artificial datasets.’ In: IEEE Access, IEEE, pp. 16504455. DOI: 10.1109/ACCESS.2020.3022820
  39. 39Ulyanov, D, Vedaldi, A and Lempitsky, V. 2017. ‘Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis.’ In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, IEEE, July 2017, pp. 41054113. DOI: 10.1109/CVPR.2017.437
  40. 40Univerity of Vienna. 2023. ‘University of vienna digital coin cabinet.’ https://ikmk-ing.univie.ac.at/home?lang=en [Accessed: (September 06, 2023)].
  41. 41Wach, K, Duong, CD, Ejdys, J, Kazlauskaitė, P, Korzynski, R, Mazurek, G, Paliszkiewicz, J and Ziemba, E. 2023. ‘The dark side of generative artificial intelligence: A critical analysis of controversies and risks of chatgpt.’ Entrepreneurial Business and Economics Review, 11(2): 730. DOI: 10.15678/EBER.2023.110201
  42. 42Wang, Y, Luo, Y, Zu, C, Zhan, B, Jiao, Z, Wu, X, Zhou, J, Shen, D and Zhou, L. 2024. ‘3d multi-modality transformer-gan for high-quality pet reconstruction.’ Medical Image Analysis, 91(102983): 730. DOI: 10.1016/j.media.2023.102983
  43. 43Xu, D, Fan, S and Kankanhalli, M. 2023. ‘Combating misinformation in the era of generative ai models.’ In: Proceedings of the 31st ACM International Conference on Multimedia. Presented at the MM ’23: The 31st ACM International Conference on Multimedia, ACM, Ottawa ON Canada, ACM, pp. 92919298. DOI: 10.1145/3581783.3612704
  44. 44Ya-Liang, C, Zhe Yu, L, Kuan-Ying, L and Winston, H. 2019. ‘Free-form video inpainting with 3d gated convolution and temporal patchgan.’ In: IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, pp. 90669075.
  45. 45Yan, N, Mei, Y, Xu, L, Yu, H, Sun, B, Wang, Z and Chen, Y. 2023. ‘Deep learning on image stitching with multi-viewpoint images: A survey.’ Neural Processing Letters, 55(4): 38633898. DOI: 10.1007/s11063-023-11226-z
  46. 46Zachariou, M, Dimitriou, N and Arandjelović, O. 2020. ‘Visual reconstruction of ancient coins using cycle-consistent generative adversarial networks.’ Sci, 2(3): 52. DOI: 10.3390/sci2030052
  47. 47Zeng, X, Cheng, L, Li, S and Liu, X. 2024. ‘Archaeology drawing generation algorithm based on multi-branch feature cross fusion.’ This is a preprint but not yet published. DOI: 10.21203/rs.3.rs-4409621/v1
  48. 48Zhang, E and Banovic, N. 2021. ‘Method for exploring generative adversarial networks (gans) via automatically generated image galleries.’ In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. DOI: 10.1145/3411764.3445714
  49. 49Zhang, Y, Seibert, P, Otto, A, Raßloff, A, Ambati, M and Kästner, M. 2024. ‘Da-vegan: Differentiably augmenting vae-gan for microstructure reconstruction from extremely small data sets.’ Computational Materials Science, 232(112661). DOI: 10.1016/j.commatsci.2023.112661
  50. 50Zhou, S, Xiao, T, Yang, Y, Feng, D, He, Q and He, W. 2017. ‘Genegan: Learning object transfiguration and attribute subspace from unpaired data.’ CoRR abs/1705.04932. DOI: 10.5244/C.31.111
  51. 51Zhu, J-Y, Park, T, Isola, P and Efros, AA. 2020. ‘Unpaired image-to-image translation using cycle-consistent adversarial networks.’ In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 22422251. DOI: 10.1109/ICCV.2017.244
DOI: https://doi.org/10.5334/jcaa.146 | Journal eISSN: 2514-8362
Language: English
Submitted on: Jan 2, 2024
Accepted on: Jul 31, 2024
Published on: Sep 10, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Mark Altaweel, Adel Khelifi, Mohammad Hashir Zafar, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.