Have a personal or library account? Click to login

References

  1. 1Aimers, JJ. 2007. What Maya collapse? Terminal classic variation in the Maya lowlands. Journal of Archaeological Research, 15: 329377. DOI: 10.1007/s10814-007-9015-x
  2. 2Alatas, SF. 2013. Ibn khaldun. DOI: 10.1093/acprof:oso/9780198090458.001.0001
  3. 3Amblard, P-O and Michel, OJJ. 2013. The relation between Granger causality and directed information theory: A review. Entropy, 15: 113143. DOI: 10.3390/e15010113
  4. 4Arfken, GB and Weber, HJ. 1999. Mathematical methods for physicists.
  5. 5Baćak, V and Kennedy, EH. 2019. Principled machine learning using the super learner: an application to predicting prison violence. Sociological Methods & Research, 48: 698721. DOI: 10.1177/0049124117747301
  6. 6Bainbridge, WS. 1995. Neural network models of religious belief. Sociological perspectives, 38: 483495. DOI: 10.2307/1389269
  7. 7Barron, ATJ, Huang, J, Spang, RL and DeDeo, S. 2018. Individuals, institutions, and innovation in the debates of the French Revolution. Proceedings of the National Academy of Sciences, 115: 46074612. DOI: 10.1073/pnas.1717729115
  8. 8Beheim, B, Atkinson, QD, Bulbulia, J, Gervais, W, Gray, RD, Henrich, J, Lang, M, Monroe, MW, Muthukrishna, M, Norenzayan, A, et al. 2021. Treatment of missing data determined conclusions regarding moralizing gods. Nature, 595: E29E34. DOI: 10.1038/s41586-021-03655-4
  9. 9Bhattacharya, T, Blasi, D, Croft, W, Cysouw, M, Hruschka, D, Maddieson, I, Müller, L, Retzlaff, N, Smith, E, Stadler, PF, Starostin, G and Youn, H. 2018. Studying Language Evolution in the Age of Big Data. J. Language Evol., 3: 94129. DOI: 10.1093/jole/lzy004
  10. 10Blast, DE, Moran, S, Moisik, SR, Widmer, P, Dediu, D and Bickell, B. 2019. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science, 363: eaav3218. DOI: 10.1126/science.aav3218
  11. 11Bruch, E and Atwell, J. 2015. Agent-based models in empirical social research. Sociological Methods & Research, 44: 186221. DOI: 10.1177/0049124113506405
  12. 12Carley, KM. 1996. Artificial intelligence within sociology. Sociological methods & research, 25: 330. DOI: 10.1177/0049124196025001001
  13. 13Caswell, H. 2001. Matrix Population Models: Construction, Analysis and Interpretation, 2nd ed. Sunderland, MA: Sinauer.
  14. 14Crabtree, SA, Bird, DW and Bird, RB. 2019. Subsistence Transitions and the Simplification of Ecological Networks in the Western Desert of Australia. Human Ecology, 47: 165177. DOI: 10.1007/s10745-019-0053-z
  15. 15Crabtree, SA, Bocinsky, RK, Hooper, PL, Ryan, SC and Kohler, TA. 2017b. How to Make a Polity (in the central Mesa Verde Region). American Antiquity, 82: 7195. DOI: 10.1017/aaq.2016.18
  16. 16Crabtree, SA, Vaughn, LJS and Crabtree, NT. 2017a. Reconstructing Ancestral Pueblo food webs in the southwestern United States. Journal of Archaeological Science, 81: 116127. DOI: 10.1016/j.jas.2017.03.005
  17. 17Craigmile, P, Herbei, R, Liu, G and Schneider, G. 2022. Statistical inference for stochastic differential equations. Wiley Interdisciplinary Reviews: Computational Statistics, e1585. DOI: 10.1002/wics.1585
  18. 18Currie, TE, Greenhill, SJ, Gray, RD, Hasegawa, T and Mace, R. 2010. Rise and fall of political complexity in island south-east asia and the pacific. Nature, 467: 801804. DOI: 10.1038/nature09461
  19. 19Davidson, T. 2017. Black Box Models and Sociological Explanations: Predicting GPA Using Neural Networks. DOI: 10.31235/osf.io/7nsrf
  20. 20Davis, W and Buffett, B. 2022. Estimation of drift and diffusion functions from unevenly sampled time-series data. Physical Review E, 106: 014140. DOI: 10.1103/PhysRevE.106.014140
  21. 21Dunne, JA, Maschner, H, Betts, MW, Huntly, N, Russell, R, Williams, RJ and Wood, SA. 2016. The roles and impacts of human huntergatherers in North Pacific marine food webs. Scientific Reports, 6: 21179. DOI: 10.1038/srep21179
  22. 22Durham, WH. 1991. Coevolution: Genes, Culture, and Human Diversity. Stanford University Press. DOI: 10.1515/9781503621534
  23. 23Francois, P, Manning, JG, Whitehouse, H, Brennan, R, Currie, T, Feeney, K and Turchin, P. 2016. A macroscope for global history: Seshat global history databank, A methodological overview.
  24. 24Friedrich, R, Peinke, J, Sahimi, M and Tabar, MRR. 2011. Approaching complexity by stochastic methods: From biological systems to turbulence. Physics Reports, 506: 87162. DOI: 10.1016/j.physrep.2011.05.003
  25. 25Frishman, A and Ronceray, P. 2020. Learning force fields from stochastic trajectories. Physical Review X, 10: 021009. DOI: 10.1103/PhysRevX.10.021009
  26. 26Geertz, C. 1973. Thick description: Toward and interpretive theory of culture. In: Geertz, C (ed.), The Interpretation of Cultures, Chap. 1. Basic Books. pp. 330.
  27. 27Gould, SJ. 1989. Wonderful Life: The Burgess Shale and the Nature of History. New York: W. W. Norton.
  28. 28Granger, CW. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37: 424438. DOI: 10.2307/1912791
  29. 29Gray, RD, Atkinson, QD and Greenhill, SJ. 2011. Language evolution and human history: what a difference a date makes. Phil. Trans. Roy. Soc. B, 366: 10901100. DOI: 10.1098/rstb.2010.0378
  30. 30Harper, K. 2021. Plagues Upon the Earth: Disease and the Course of Human History. Princeton University Press. DOI: 10.1515/9780691224725
  31. 31Hodder, I. 2012. Entangled: An Archaeology of the Relationships between Humans and Things. Chichester, UK: Wiley-Blackwell. DOI: 10.1002/9781118241912
  32. 32Hoffmann, M, Scherer, M, Hempel, T, Mardt, A, de Silva, B, Husic, BE, Klus, S, Wu, H, Kutz, N, Brunton, SL, et al. 2021. Deeptime: a python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology, 3: 015009. DOI: 10.1088/2632-2153/ac3de0
  33. 33Hoggarth, JA, Restall, M, Wood, JJ and Kennett, DJ. 2017. Drought and its demographic effects in the maya lowlands. Current Anthropology, 58: 82113. DOI: 10.1086/690046
  34. 34Ingold, T. 2007. Lines: A Brief History. New York: Routledge. DOI: 10.4324/9780203961155
  35. 35Jones, JH. 2009. The force of selection on the human life cycle. Evolution and Human Behavior, 30: 305314. DOI: 10.1016/j.evolhumbehav.2009.01.005
  36. 36Jones, JH and Tuljapurkar, S. 2015. Measuring selective constraint on fertility in human life histories. Proc. Natl. Acad. Sci., 112: 89828986. USA. DOI: 10.1073/pnas.1422037112
  37. 37Kennett, DJ, Breitenbach, SFM, Aquino, VV, Asmerom, Y, Awe, J, Baldini, JUL, Bartlein, P, Culleton, BJ, Ebert, C, Jazwa, C, et al. 2012. Development and disintegration of Maya political systems in response to climate change. Science, 338: 788791. DOI: 10.1126/science.1226299
  38. 38Khaldun, I. 2015. The Muqaddimah: An Introduction to History-Abridged Edition. Princeton University Press.
  39. 39Kidger, P, Foster, J, Li, X, Oberhauser, H and Lyons, T. 2020. Neural sdes made easy: Sdes are infinite-dimensional gans. https://openreview.net/forum?id=padYzanQNbg.
  40. 40Kohler, TA, Crabtree, SA, Bocinsky, RK and Hooper, PL. 2018. Sociopolitical Evolution in Mid-Range Societies: The Prehispanic Pueblo Case. In: Sabloff, JA and Sabloff, PLW (eds.), The Emergence of Premodern States: New Perspectives on the Development of Complex Societies. Santa Fe, NM: Santa Fe Institute. pp. 133184. DOI: 10.37911/9781947864030.06
  41. 41Lawler, GF. 2018. Introduction to stochastic processes. CRC Press. DOI: 10.1201/9781315273600
  42. 42Li, X, Wong, T-KL, Chen, RT and Duvenaud, DK. 2020. Scalable gradients and variational inference for stochastic differential equations. In: Symposium on Advances in Approximate Bayesian Inference, PMLR. pp. 128.
  43. 43Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. Springer Science & Business Media. DOI: 10.1007/978-3-540-27752-1
  44. 44MacLeod, H, Yang, S, Oakes, K, Connelly, K and Natarajan, S. 2016. Identifying rare diseases from behavioural data: a machine learning approach. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), IEEE, pp. 130139. DOI: 10.1109/CHASE.2016.7
  45. 45Malik, N. 2020. Uncovering transitions in paleoclimate time series and the climate driven demise of an ancient civilization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30: 083108. DOI: 10.1063/5.0012059
  46. 46Maltseva, AV, Shilkina, NE and Mahnitkina, OV. 2016. Data mining sociology: experience and outlook for research. Sociological Studies, 3: 3544.
  47. 47McAllister, JW. 2002. Historical and Structural Approaches in the Natural and Social Sciences. In: Tindemans, P, Verrijn-Stuart, A and Visser, R (eds.), The Future of the Sciences and Humanities. Amsterdam: Amsterdam University Press. pp. 1954.
  48. 48Meyn, S and Tweedie, RL. 2009. Markov Chains and Stochastic Stability. Cambridge University Press. pp. 48684879. DOI: 10.1017/CBO9780511626630
  49. 49Miranda, L and Freeman, J. 2020. The two types of society: Computationally revealing recurrent social formations and their evolutionary trajectories. PLOS ONE, 15: e0232609. DOI: 10.1371/journal.pone.0232609
  50. 50Painter, DT, Kempes, C, West, G and Laubichler, M. 2020. The four regimes of the Great Acceleration. Anthropocence Review. In review.
  51. 51Pavliotis, GA. 2016. Stochastic processes and applications. Springer.
  52. 52Peregrine, PN. 2018. Toward a Theory of Recurrent Social Formations. In: Sabloff, JA and Sabloff, PLW (eds.), The Emergence of Pre-Modern States: New Perspectives on the Development of Complex Societies. Santa Fe, NM: SFI Press. pp. 271295. DOI: 10.37911/9781947864030.09
  53. 53Peregrine, PN. 2020. Climate and social change at the start of the Late Antique Little Ice Age. DOI: 10.1177/0959683620941079
  54. 54Purzycki, BG, Apicella, C, Atkinson, QD, Cohen, E, McNamara, RA, Willard, AK, Xygalatas, D, Norenzayan, A and Henrich, J. 2016. Moralistic gods, supernatural punishment and the expansion of human sociality. Nature, 530: 327330. DOI: 10.1038/nature16980
  55. 55Rogers, A. 1966. The Multiregional Matrix Growth Operator and the Stable Interregional Age Structure. Demography, 3: 537544. DOI: 10.2307/2060178
  56. 56Romanowska, I, Gamble, C, Bullock, S and Sturt, F. 2017. Dispersal and the movius line: Testing the effect of dispersal on population density through simulation. Quaternary International, 431(B): 5363. DOI: 10.1016/j.quaint.2016.01.016
  57. 57Sauer, T, Yorke, JA and Casdagli, M. 1991. Embedology. Journal of statistical Physics, 65: 579616. DOI: 10.1007/BF01053745
  58. 58Scheinfeldt, LB, Soi, S and Tishkoff, SA. 2010. Working toward a synthesis of archaeological, linguistic, and genetic data for inferring African population history. Proc. Natl. Acad. Sci., 107(S2): 89318938. USA. DOI: 10.1073/pnas.1002563107
  59. 59Schreiber, T. 2000. Measuring information transfer. Physical Review Letters, 85: 461464. DOI: 10.1103/PhysRevLett.85.461
  60. 60Sewell, WH. 1992. A Theory of Structure: Duality, Agency, and Transformation. American Journal of Sociology, 98: 129. DOI: 10.1086/229967
  61. 61Sheehan, O, Watts, J, Gray, RD and Atkinson, QD. 2018. Coevolution of landesque capital intensive agriculture and sociopolitical hierarchy. Proceedings of the National Academy of Sciences, 115: 36283633. DOI: 10.1073/pnas.1714558115
  62. 62Shin, J, Price, MH, Wolpert, DH, Shimao, H, Tracey, B and Kohler, TA. 2020. Scale and information-processing thresholds in Holocene social evolution. Nat. Comm. 11: 2394. DOI: 10.1038/s41467-020-16035-9
  63. 63Steffen, W, Sanderson, A, Tyson, PD, Jager, J, Matson, PA, III Moore, B, Oldfield, F, Richardson, K, Schellnhuber, HJ, Turner, BL and Wasson, RJ. 2004. Global Change and the Earth System: A Planet Under Pressure. Springer-Verlag, Berlin. DOI: 10.1007/b137870
  64. 64Strawhacker, C, Snitker, G, Peeples, M, Kinzig, A, Kintigh, K, Bocinsky, K and Spielmann, K. 2020. A Landscape Perspective on Climate-Driven Risks to Food Security: Exploring the Relationship between Climate and Social Transformation in the Prehispanic U.S. Southwest. American Antiquity, 85: 427451. DOI: 10.1017/aaq.2020.35
  65. 65Tainter, JA. 1988. The Collapse of Complex Societies, Vol. New Studies in Archaeology. Cambridge University Press.
  66. 66Takens, F. 1981. Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, Warwick 1980. Springer. pp. 366381. DOI: 10.1007/BFb0091924
  67. 67Turchin, P, Currie, TE, Whitehouse, H, Francois, P, Feeney, K, Mullins, D, Hoyer, D, Collins, C, Grohmann, S, Savage, P, Mendel-Gleason, G, Turner, E, Dupeyron, A, Cioni, E, Reddish, J, Levine, J, Jordan, G, Brandl, E, Williams, A, Cesaretti, R, Krueger, M, Ceccarelli, A, Figliulo-Rosswurm, J, Tuan, P-J, Peregrine, P, Marciniak, A, Preiser-Kapeller, J, Kradin, N, Korotayev, A, Palmisano, A, Baker, D, Bidmead, J, Bol, P, Christian, D, Cook, C, Covey, A, Feinman, G, Júlíusson, AD, Kristinsson, A, Miksic, J, Mostern, R, Petrie, C, Rudiak-Gould, P, ter Haar, B, Wallace, V, Mair, V, Xie, L, Baines, J, Bridges, E, Manning, J, Lockhart, B, Bogaard, A and Spencer, C. 2018b. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization - supplementary material. Proc. Natl. Acad. Sci. 115: E144E151. Supplementary Material. USA. DOI: 10.1073/pnas.1708800115
  68. 68Turchin, P. 2018. Fitting dynamic regression models to seshat data. Cliodynamics, 9. DOI: 10.21237/C7CLIO9137696
  69. 69Turchin, P, Hoyer, D, Bennett, J, Basava, K, Cioni, E, Feeney, K, Francois, P, Holder, S, Levine, J, Nugent, S, et al. 2020. The equinox2020 seshat data release. Cliodynamics, 11. DOI: 10.21237/C7CLIO11148620
  70. 70Turchin, P, Currie, TE, Whitehouse, H, Francois, P, Feeney, K, Mullins, D, Hoyer, D, Collins, C, Grohmann, S, Savage, P, Mendel-Gleason, G., Turner, E, Dupeyron, A, Cioni, E, Reddish, J, Levine, J, Jordan, G, Brandl, E, Williams, A, Cesaretti, R, Krueger, M, Ceccarelli, A, Figliulo-Rosswurm, J, Tuan, P-J, Peregrine, P, Marciniak, A, Preiser-Kapeller, J, Kradin, N, Korotayev, A, Palmisano, A, Baker, D, Bidmead, J, Bol, P, Christian, D, Cook, C, Covey, A, Feinman, G, Júlíusson, AD, Kristinsson, A, Miksic, J, Mostern, R, Petrie, C, Rudiak-Gould, P, ter Haar, B, Wallace, V, Mair, V, Xie, L, Baines, J, Bridges, E, Manning, J, Lockhart, B, Bogaard, A and Spencer, C. 2018a. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proc. Natl. Acad. Sci., 115: E144E151. USA. DOI: 10.1073/pnas.1708800115
  71. 71Turner, BL and Sabloff, JA. 2012. Classic period collapse of the central maya lowlands: Insights about human–environment relationships for sustainability. Proceedings of the National Academy of Sciences, 109: 1390813914. DOI: 10.1073/pnas.1210106109
  72. 72Tylor, EB. 1871. Primitive Culture: Researches into the Development of Mythology, Philosophy, Religion, Art, and Custom. London: John Murra.
  73. 73Webster, D. 2002. The Fall of the Ancient Maya: Solving the Mystery of the Maya Collapse. Thames & Hudson.
  74. 74Weiss, H, Courty, MA, Wetterstrom, W, Guichard, F, Senior, L, Meadow, R and Curnow, A. 1993. The Genesis and Collapse of Third Millennium North Mesopotamian Civilization. Science, 261: 9951004. DOI: 10.1126/science.261.5124.995
  75. 75Whitehouse, H, Francois, P, Savage, PE, Currie, TE, Feeney, KC, Cioni, E, Purcell, R, Ross, RM, Larson, J, Baines, J, et al. 2019. Complex societies precede moralizing gods throughout world history. Nature, 568: 226229. DOI: 10.1038/s41586-019-1043-4
  76. 76Whitehouse, H, Francois, P, Savage, PE, Currie, TE, Feeney, KC, Cioni, E, Purcell, R, Ross, RM, Larson, J, Baines, J, et al. 2021. Retraction note: Complex societies precede moralizing gods throughout world history. Nature, 595: 320320. DOI: 10.1038/s41586-021-03656-3
  77. 77Wood, JW. 1998. A theory of preindustrial population dynamics demography, economy, and well-being in Malthusian systems. Current Anthropology, 39: 99135. DOI: 10.1086/204700
  78. 78Yeakel, JD, Pires, MM, Rudolf, L, Dominy, NJ, Koch, PL, Guimarães, PR and Gross, T. 2014. Collapse of an ecological network in Ancient Egypt. Proceedings of the National Academy of Sciences, 111: 1447214477. https://www.pnas.org/content/111/40/14472.full.pdf. DOI: 10.1073/pnas.1408471111
  79. 79Yildiz, C, Heinonen, M, Intosalmi, J, Mannerstrom, H and Lahdesmaki, H. 2018. Learning stochastic differential equations with Gaussian processes without gradient matching. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), IEEE. pp. 16. DOI: 10.1109/MLSP.2018.8516991
  80. 80Zeng, L. 1999. Prediction and classification with neural network models. Sociological methods & research, 27: 499524. DOI: 10.1177/0049124199027004002
  81. 81Zhan, D, Yi, S and Jiang, D. 2018. Small-Scale Demographic Sequences Projection Based on Time Series Clustering and LSTM-RNN. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE. pp. 803809. DOI: 10.1109/ICDMW.2018.00120
DOI: https://doi.org/10.5334/jcaa.113 | Journal eISSN: 2514-8362
Language: English
Submitted on: May 6, 2023
Accepted on: Nov 21, 2023
Published on: Feb 8, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 David H. Wolpert, Michael H. Price, Stefani A. Crabtree, Timothy A. Kohler, Jürgen Jost, James Evans, Peter F. Stadler, Hajime Shimao, Manfred D. Laubichler, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.