References
- 1Aimers, JJ. 2007. What Maya collapse? Terminal classic variation in the Maya lowlands. Journal of Archaeological Research, 15: 329–377. DOI: 10.1007/s10814-007-9015-x
- 2Alatas, SF. 2013. Ibn khaldun. DOI: 10.1093/acprof:oso/9780198090458.001.0001
- 3Amblard, P-O and Michel, OJJ. 2013. The relation between Granger causality and directed information theory: A review. Entropy, 15: 113–143. DOI: 10.3390/e15010113
- 4Arfken, GB and Weber, HJ. 1999. Mathematical methods for physicists.
- 5Baćak, V and Kennedy, EH. 2019. Principled machine learning using the super learner: an application to predicting prison violence. Sociological Methods & Research, 48: 698–721. DOI: 10.1177/0049124117747301
- 6Bainbridge, WS. 1995. Neural network models of religious belief. Sociological perspectives, 38: 483–495. DOI: 10.2307/1389269
- 7Barron, ATJ, Huang, J, Spang, RL and DeDeo, S. 2018. Individuals, institutions, and innovation in the debates of the French Revolution. Proceedings of the National Academy of Sciences, 115: 4607–4612. DOI: 10.1073/pnas.1717729115
- 8Beheim, B, Atkinson, QD, Bulbulia, J, Gervais, W, Gray, RD, Henrich, J, Lang, M, Monroe, MW, Muthukrishna, M, Norenzayan, A, et al. 2021. Treatment of missing data determined conclusions regarding moralizing gods. Nature, 595: E29–E34. DOI: 10.1038/s41586-021-03655-4
- 9Bhattacharya, T, Blasi, D, Croft, W, Cysouw, M, Hruschka, D, Maddieson, I, Müller, L, Retzlaff, N, Smith, E, Stadler, PF, Starostin, G and Youn, H. 2018. Studying Language Evolution in the Age of Big Data. J. Language Evol., 3: 94–129. DOI: 10.1093/jole/lzy004
- 10Blast, DE, Moran, S, Moisik, SR, Widmer, P, Dediu, D and Bickell, B. 2019. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science, 363:
eaav3218 . DOI: 10.1126/science.aav3218 - 11Bruch, E and Atwell, J. 2015. Agent-based models in empirical social research. Sociological Methods & Research, 44: 186–221. DOI: 10.1177/0049124113506405
- 12Carley, KM. 1996. Artificial intelligence within sociology. Sociological methods & research, 25: 3–30. DOI: 10.1177/0049124196025001001
- 13Caswell, H. 2001. Matrix Population Models: Construction, Analysis and Interpretation, 2nd ed. Sunderland, MA: Sinauer.
- 14Crabtree, SA, Bird, DW and Bird, RB. 2019. Subsistence Transitions and the Simplification of Ecological Networks in the Western Desert of Australia. Human Ecology, 47: 165–177. DOI: 10.1007/s10745-019-0053-z
- 15Crabtree, SA, Bocinsky, RK, Hooper, PL, Ryan, SC and Kohler, TA. 2017b. How to Make a Polity (in the central Mesa Verde Region). American Antiquity, 82: 71–95. DOI: 10.1017/aaq.2016.18
- 16Crabtree, SA, Vaughn, LJS and Crabtree, NT. 2017a. Reconstructing Ancestral Pueblo food webs in the southwestern United States. Journal of Archaeological Science, 81: 116–127. DOI: 10.1016/j.jas.2017.03.005
- 17Craigmile, P, Herbei, R, Liu, G and Schneider, G. 2022. Statistical inference for stochastic differential equations. Wiley Interdisciplinary Reviews: Computational Statistics,
e1585 . DOI: 10.1002/wics.1585 - 18Currie, TE, Greenhill, SJ, Gray, RD, Hasegawa, T and Mace, R. 2010. Rise and fall of political complexity in island south-east asia and the pacific. Nature, 467: 801–804. DOI: 10.1038/nature09461
- 19Davidson, T. 2017. Black Box Models and Sociological Explanations: Predicting GPA Using Neural Networks. DOI: 10.31235/osf.io/7nsrf
- 20Davis, W and Buffett, B. 2022. Estimation of drift and diffusion functions from unevenly sampled time-series data. Physical Review E, 106: 014140. DOI: 10.1103/PhysRevE.106.014140
- 21Dunne, JA, Maschner, H, Betts, MW, Huntly, N, Russell, R, Williams, RJ and Wood, SA. 2016. The roles and impacts of human huntergatherers in North Pacific marine food webs. Scientific Reports, 6: 21179. DOI: 10.1038/srep21179
- 22Durham, WH. 1991. Coevolution: Genes, Culture, and Human Diversity. Stanford University Press. DOI: 10.1515/9781503621534
- 23Francois, P, Manning, JG, Whitehouse, H, Brennan, R, Currie, T, Feeney, K and Turchin, P. 2016. A macroscope for global history: Seshat global history databank, A methodological overview.
- 24Friedrich, R, Peinke, J, Sahimi, M and Tabar, MRR. 2011. Approaching complexity by stochastic methods: From biological systems to turbulence. Physics Reports, 506: 87–162. DOI: 10.1016/j.physrep.2011.05.003
- 25Frishman, A and Ronceray, P. 2020. Learning force fields from stochastic trajectories. Physical Review X, 10: 021009. DOI: 10.1103/PhysRevX.10.021009
- 26Geertz, C. 1973.
Thick description: Toward and interpretive theory of culture . In: Geertz, C (ed.), The Interpretation of Cultures, Chap. 1. Basic Books. pp. 3–30. - 27Gould, SJ. 1989. Wonderful Life: The Burgess Shale and the Nature of History. New York: W. W. Norton.
- 28Granger, CW. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37: 424–438. DOI: 10.2307/1912791
- 29Gray, RD, Atkinson, QD and Greenhill, SJ. 2011. Language evolution and human history: what a difference a date makes. Phil. Trans. Roy. Soc. B, 366: 1090–1100. DOI: 10.1098/rstb.2010.0378
- 30Harper, K. 2021. Plagues Upon the Earth: Disease and the Course of Human History. Princeton University Press. DOI: 10.1515/9780691224725
- 31Hodder, I. 2012. Entangled: An Archaeology of the Relationships between Humans and Things. Chichester, UK: Wiley-Blackwell. DOI: 10.1002/9781118241912
- 32Hoffmann, M, Scherer, M, Hempel, T, Mardt, A, de Silva, B, Husic, BE, Klus, S, Wu, H, Kutz, N, Brunton, SL, et al. 2021. Deeptime: a python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology, 3: 015009. DOI: 10.1088/2632-2153/ac3de0
- 33Hoggarth, JA, Restall, M, Wood, JJ and Kennett, DJ. 2017. Drought and its demographic effects in the maya lowlands. Current Anthropology, 58: 82–113. DOI: 10.1086/690046
- 34Ingold, T. 2007. Lines: A Brief History. New York: Routledge. DOI: 10.4324/9780203961155
- 35Jones, JH. 2009. The force of selection on the human life cycle. Evolution and Human Behavior, 30: 305–314. DOI: 10.1016/j.evolhumbehav.2009.01.005
- 36Jones, JH and Tuljapurkar, S. 2015.
Measuring selective constraint on fertility in human life histories . Proc. Natl. Acad. Sci., 112: 8982–8986. USA. DOI: 10.1073/pnas.1422037112 - 37Kennett, DJ, Breitenbach, SFM, Aquino, VV, Asmerom, Y, Awe, J, Baldini, JUL, Bartlein, P, Culleton, BJ, Ebert, C, Jazwa, C, et al. 2012. Development and disintegration of Maya political systems in response to climate change. Science, 338: 788–791. DOI: 10.1126/science.1226299
- 38Khaldun, I. 2015. The Muqaddimah: An Introduction to History-Abridged Edition. Princeton University Press.
- 39Kidger, P, Foster, J, Li, X, Oberhauser, H and Lyons, T. 2020. Neural sdes made easy: Sdes are infinite-dimensional gans.
https://openreview.net/forum?id=padYzanQNbg . - 40Kohler, TA, Crabtree, SA, Bocinsky, RK and Hooper, PL. 2018.
Sociopolitical Evolution in Mid-Range Societies: The Prehispanic Pueblo Case . In: Sabloff, JA and Sabloff, PLW (eds.), The Emergence of Premodern States: New Perspectives on the Development of Complex Societies. Santa Fe, NM: Santa Fe Institute. pp. 133–184. DOI: 10.37911/9781947864030.06 - 41Lawler, GF. 2018. Introduction to stochastic processes. CRC Press. DOI: 10.1201/9781315273600
- 42Li, X, Wong, T-KL, Chen, RT and Duvenaud, DK. 2020.
Scalable gradients and variational inference for stochastic differential equations . In: Symposium on Advances in Approximate Bayesian Inference, PMLR. pp. 1–28. - 43Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. Springer Science & Business Media. DOI: 10.1007/978-3-540-27752-1
- 44MacLeod, H, Yang, S, Oakes, K, Connelly, K and Natarajan, S. 2016. Identifying rare diseases from behavioural data: a machine learning approach. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE),
IEEE , pp. 130–139. DOI: 10.1109/CHASE.2016.7 - 45Malik, N. 2020. Uncovering transitions in paleoclimate time series and the climate driven demise of an ancient civilization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30: 083108. DOI: 10.1063/5.0012059
- 46Maltseva, AV, Shilkina, NE and Mahnitkina, OV. 2016. Data mining sociology: experience and outlook for research. Sociological Studies, 3: 35–44.
- 47McAllister, JW. 2002.
Historical and Structural Approaches in the Natural and Social Sciences . In: Tindemans, P, Verrijn-Stuart, A and Visser, R (eds.), The Future of the Sciences and Humanities. Amsterdam: Amsterdam University Press. pp. 19–54. - 48Meyn, S and Tweedie, RL. 2009. Markov Chains and Stochastic Stability. Cambridge University Press. pp. 4868–4879. DOI: 10.1017/CBO9780511626630
- 49Miranda, L and Freeman, J. 2020. The two types of society: Computationally revealing recurrent social formations and their evolutionary trajectories. PLOS ONE, 15:
e0232609 . DOI: 10.1371/journal.pone.0232609 - 50Painter, DT, Kempes, C, West, G and Laubichler, M. 2020. The four regimes of the Great Acceleration. Anthropocence Review. In review.
- 51Pavliotis, GA. 2016. Stochastic processes and applications. Springer.
- 52Peregrine, PN. 2018.
Toward a Theory of Recurrent Social Formations . In: Sabloff, JA and Sabloff, PLW (eds.), The Emergence of Pre-Modern States: New Perspectives on the Development of Complex Societies. Santa Fe, NM: SFI Press. pp. 271–295. DOI: 10.37911/9781947864030.09 - 53Peregrine, PN. 2020. Climate and social change at the start of the Late Antique Little Ice Age. DOI: 10.1177/0959683620941079
- 54Purzycki, BG, Apicella, C, Atkinson, QD, Cohen, E, McNamara, RA, Willard, AK, Xygalatas, D, Norenzayan, A and Henrich, J. 2016. Moralistic gods, supernatural punishment and the expansion of human sociality. Nature, 530: 327–330. DOI: 10.1038/nature16980
- 55Rogers, A. 1966. The Multiregional Matrix Growth Operator and the Stable Interregional Age Structure. Demography, 3: 537–544. DOI: 10.2307/2060178
- 56Romanowska, I, Gamble, C, Bullock, S and Sturt, F. 2017. Dispersal and the movius line: Testing the effect of dispersal on population density through simulation. Quaternary International, 431(B): 53–63. DOI: 10.1016/j.quaint.2016.01.016
- 57Sauer, T, Yorke, JA and Casdagli, M. 1991. Embedology. Journal of statistical Physics, 65: 579–616. DOI: 10.1007/BF01053745
- 58Scheinfeldt, LB, Soi, S and Tishkoff, SA. 2010.
Working toward a synthesis of archaeological, linguistic, and genetic data for inferring African population history . Proc. Natl. Acad. Sci., 107(S2): 8931–8938. USA. DOI: 10.1073/pnas.1002563107 - 59Schreiber, T. 2000. Measuring information transfer. Physical Review Letters, 85: 461–464. DOI: 10.1103/PhysRevLett.85.461
- 60Sewell, WH. 1992. A Theory of Structure: Duality, Agency, and Transformation. American Journal of Sociology, 98: 1–29. DOI: 10.1086/229967
- 61Sheehan, O, Watts, J, Gray, RD and Atkinson, QD. 2018. Coevolution of landesque capital intensive agriculture and sociopolitical hierarchy. Proceedings of the National Academy of Sciences, 115: 3628–3633. DOI: 10.1073/pnas.1714558115
- 62Shin, J, Price, MH, Wolpert, DH, Shimao, H, Tracey, B and Kohler, TA. 2020. Scale and information-processing thresholds in Holocene social evolution. Nat. Comm. 11: 2394. DOI: 10.1038/s41467-020-16035-9
- 63Steffen, W, Sanderson, A, Tyson, PD, Jager, J, Matson, PA, III Moore, B, Oldfield, F, Richardson, K, Schellnhuber, HJ, Turner, BL and Wasson, RJ. 2004. Global Change and the Earth System: A Planet Under Pressure. Springer-Verlag, Berlin. DOI: 10.1007/b137870
- 64Strawhacker, C, Snitker, G, Peeples, M, Kinzig, A, Kintigh, K, Bocinsky, K and Spielmann, K. 2020. A Landscape Perspective on Climate-Driven Risks to Food Security: Exploring the Relationship between Climate and Social Transformation in the Prehispanic U.S. Southwest. American Antiquity, 85: 427–451. DOI: 10.1017/aaq.2020.35
- 65Tainter, JA. 1988. The Collapse of Complex Societies, Vol. New Studies in Archaeology. Cambridge University Press.
- 66Takens, F. 1981.
Detecting strange attractors in turbulence . In: Dynamical systems and turbulence, Warwick 1980. Springer. pp. 366–381. DOI: 10.1007/BFb0091924 - 67Turchin, P, Currie, TE, Whitehouse, H, Francois, P, Feeney, K, Mullins, D, Hoyer, D, Collins, C, Grohmann, S, Savage, P, Mendel-Gleason, G, Turner, E, Dupeyron, A, Cioni, E, Reddish, J, Levine, J, Jordan, G, Brandl, E, Williams, A, Cesaretti, R, Krueger, M, Ceccarelli, A, Figliulo-Rosswurm, J, Tuan, P-J, Peregrine, P, Marciniak, A, Preiser-Kapeller, J, Kradin, N, Korotayev, A, Palmisano, A, Baker, D, Bidmead, J, Bol, P, Christian, D, Cook, C, Covey, A, Feinman, G, Júlíusson, AD, Kristinsson, A, Miksic, J, Mostern, R, Petrie, C, Rudiak-Gould, P, ter Haar, B, Wallace, V, Mair, V, Xie, L, Baines, J, Bridges, E, Manning, J, Lockhart, B, Bogaard, A and Spencer, C. 2018b.
Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization - supplementary material . Proc. Natl. Acad. Sci. 115: E144–E151. Supplementary Material. USA. DOI: 10.1073/pnas.1708800115 - 68Turchin, P. 2018. Fitting dynamic regression models to seshat data. Cliodynamics, 9. DOI: 10.21237/C7CLIO9137696
- 69Turchin, P, Hoyer, D, Bennett, J, Basava, K, Cioni, E, Feeney, K, Francois, P, Holder, S, Levine, J, Nugent, S, et al. 2020. The equinox2020 seshat data release. Cliodynamics, 11. DOI: 10.21237/C7CLIO11148620
- 70Turchin, P, Currie, TE, Whitehouse, H, Francois, P, Feeney, K, Mullins, D, Hoyer, D, Collins, C, Grohmann, S, Savage, P, Mendel-Gleason, G., Turner, E, Dupeyron, A, Cioni, E, Reddish, J, Levine, J, Jordan, G, Brandl, E, Williams, A, Cesaretti, R, Krueger, M, Ceccarelli, A, Figliulo-Rosswurm, J, Tuan, P-J, Peregrine, P, Marciniak, A, Preiser-Kapeller, J, Kradin, N, Korotayev, A, Palmisano, A, Baker, D, Bidmead, J, Bol, P, Christian, D, Cook, C, Covey, A, Feinman, G, Júlíusson, AD, Kristinsson, A, Miksic, J, Mostern, R, Petrie, C, Rudiak-Gould, P, ter Haar, B, Wallace, V, Mair, V, Xie, L, Baines, J, Bridges, E, Manning, J, Lockhart, B, Bogaard, A and Spencer, C. 2018a.
Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization . Proc. Natl. Acad. Sci., 115: E144–E151. USA. DOI: 10.1073/pnas.1708800115 - 71Turner, BL and Sabloff, JA. 2012. Classic period collapse of the central maya lowlands: Insights about human–environment relationships for sustainability. Proceedings of the National Academy of Sciences, 109: 13908–13914. DOI: 10.1073/pnas.1210106109
- 72Tylor, EB. 1871. Primitive Culture: Researches into the Development of Mythology, Philosophy, Religion, Art, and Custom. London: John Murra.
- 73Webster, D. 2002. The Fall of the Ancient Maya: Solving the Mystery of the Maya Collapse. Thames & Hudson.
- 74Weiss, H, Courty, MA, Wetterstrom, W, Guichard, F, Senior, L, Meadow, R and Curnow, A. 1993. The Genesis and Collapse of Third Millennium North Mesopotamian Civilization. Science, 261: 995–1004. DOI: 10.1126/science.261.5124.995
- 75Whitehouse, H, Francois, P, Savage, PE, Currie, TE, Feeney, KC, Cioni, E, Purcell, R, Ross, RM, Larson, J, Baines, J, et al. 2019. Complex societies precede moralizing gods throughout world history. Nature, 568: 226–229. DOI: 10.1038/s41586-019-1043-4
- 76Whitehouse, H, Francois, P, Savage, PE, Currie, TE, Feeney, KC, Cioni, E, Purcell, R, Ross, RM, Larson, J, Baines, J, et al. 2021. Retraction note: Complex societies precede moralizing gods throughout world history. Nature, 595: 320–320. DOI: 10.1038/s41586-021-03656-3
- 77Wood, JW. 1998. A theory of preindustrial population dynamics demography, economy, and well-being in Malthusian systems. Current Anthropology, 39: 99–135. DOI: 10.1086/204700
- 78Yeakel, JD, Pires, MM, Rudolf, L, Dominy, NJ, Koch, PL, Guimarães, PR and Gross, T. 2014. Collapse of an ecological network in Ancient Egypt. Proceedings of the National Academy of Sciences, 111: 14472–14477.
https://www.pnas.org/content/111/40/14472.full.pdf . DOI: 10.1073/pnas.1408471111 - 79Yildiz, C, Heinonen, M, Intosalmi, J, Mannerstrom, H and Lahdesmaki, H. 2018.
Learning stochastic differential equations with Gaussian processes without gradient matching . In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), IEEE. pp. 1–6. DOI: 10.1109/MLSP.2018.8516991 - 80Zeng, L. 1999. Prediction and classification with neural network models. Sociological methods & research, 27: 499–524. DOI: 10.1177/0049124199027004002
- 81Zhan, D, Yi, S and Jiang, D. 2018. Small-Scale Demographic Sequences Projection Based on Time Series Clustering and LSTM-RNN. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW).
IEEE . pp. 803–809. DOI: 10.1109/ICDMW.2018.00120
