References
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. 10.3322/caac.21660.
- Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15–23. 10.1016/j.breast.2022.06.003.
- World Health Organization. WHO Position Paper on Mammography Screening. World Health Organization; 2014. ISBN 978 92 4 150793 6.
- Mann RM, Kuhl CK, Moy L. Contrast‑enhanced MRI for breast cancer screening. J Magn Reson Imaging. 2019;50(2):377–390. 10.1002/jmri.26654.
- Xiao J, Rahbar H, Hippe DS, et al. Dynamic contrast‑enhanced breast MRI features correlate with invasive breast cancer angiogenesis. NPJ Breast Cancer. 2021;7(1):42. 10.1038/s41523-021-00247-3.
- Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016;278(2):563–577. 10.1148/radiol.2015151169.
- Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. 10.1038/ncomms5006.
- Milenković J, Dalmış MU, Žgajnar J, Platel B. Textural analysis of early‑phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE‑MRI protocol. Med Phys. 2017;44(9):4652–4664. 10.1002/mp.12408.
- Liu Z, Li Z, Qu J, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: A multicenter study. Clin Cancer Res. 2019;25(12):3538–3547. 10.1158/1078-0432.CCR-18-3190.
- Waugh SA, Purdie CA, Jordan LB, et al. Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur Radiol. 2016;26(2):322–330. 10.1007/s00330-015-3845-6.
- Cui X, Wang N, Zhao Y, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using radiomics features of DCE‑MRI. Sci Rep. 2019;9:2240. 10.1038/s41598-019-38502-0.
- Tirada N, Aujero M, Khorjekar G, et al. Breast cancer tissue markers, genomic profiling, and other prognostic factors: A primer for radiologists. Radiographics. 2018;38(7):1902–1920. 10.1148/rg.2018180047.
- Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16–27. 10.1158/1055-9965.EPI-15-0578.
- Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2020;49:74–80. 10.1016/j.breast.2019.10.018.
- De Luca F, Rotunno G, Salvianti F, et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. 2016;7(18):26107–2619. 10.18632/oncotarget.8431.
- Pesapane F, Rotili A, Agazzi GM, et al. Recent radiomics advancements in breast cancer: Lessons and pitfalls for the next future. Curr Oncol. 2021;28(4):2351–2372. 10.3390/curroncol28040217.
- Ogston KN, Miller ID, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: Prognostic significance and survival. Breast. 2003;12(5):320–327. 10.1016/S0960-9776(03)00106-1.
- Strzelecki M, Szczypinski P, Materka A, Klepaczko A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl Instrum Methods Phys Res A. 2013;702:137–140. 10.1016/j.nima.2012.09.006.
- Jensen LJ, Kim D, Elgeti T, Steffen IG, Hamm B, Nagel SN. Stability of radiomic features across different region of interest sizes‑A CT and MR phantom study. Tomography. 2021;7(2):238–252. 10.3390/tomography7020022.
- Gity M, Moradi B, Arami R, Arabkheradmand A, Kazemi MA. Two different methods of region‑of‑interest placement for differentiation of benign and malignant breast lesions by apparent diffusion coefficient value. Asian Pac J Cancer Prev. 2018;19(10):2765–2770. 10.22034/APJCP.2018.19.10.2765.
- Holli K, Lääperi AL, Harrison L, et al. Characterization of breast cancer types by texture analysis of magnetic resonance images. Acad Radiol. 2010;17(2):135–141. 10.1016/j.acra.2009.08.012.
- Li H, Zhang J, Wang L, et al. Radiomics nomogram of contrast‑enhanced spectral mammography for prediction of axillary lymph node metastasis in breast cancer: A multicenter study. Eur J Nucl Med Mol Imaging. 2020;47(12):2877–2886. 10.1007/s00330-020-07016-z.
- Pesapane F, De Marco P, Rapino A, et al. How radiomics can improve breast cancer diagnosis and treatment. J Clin Med. 2023;12(4):1372. 10.3390/jcm12041372.
- Yip SSF, Parmar C, Kim J, Huynha E, Maka RH, Aerts HJWL. Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur J Radiol. 2017;97:8–15. 10.1016/j.ejrad.2017.10.009.
- Saravi B, Guzel HE, Zink A, et al. Synthetic 3D spinal vertebrae reconstruction from Biplanar X‑rays utilizing generative adversarial networks. J Pers Med. 2023;13(12):1642. 10.3390/jpm13121642.
- Saravi B, Zink A, Tabukashvili E, et al. Integrating radiomics with clinical data for enhanced prediction of vertebral fracture risk. Front Bioeng Biotechnol. 2024;12:1485364. 10.3389/fbioe.2024.1485364.
- Bevers TB, Helvie M, Bonaccio E, et al. Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(11):1362–1389. 10.6004/jnccn.2018.0083.
- Zhou J, Zhang Y, Chang KT, et al. Diagnosis of benign and malignant breast lesions on DCE‑MRI by using radiomics and deep learning with consideration of peritumor tissue. J Magn Reson Imaging. 2020;51(3):798–809. 10.1002/jmri.26981.
- Xie T, Wang Z, Zhao Q, et al. Machine learning‑based analysis of MR multiparametric radiomics for the subtype classification of breast cancer. Front Oncol. 2019;9:505. 10.3389/fonc.2019.00505.
- Li H, Mendel KR, Lan L, Sheth D, Giger ML. Digital mammography in breast cancer: Additive value of radiomics of breast parenchyma. Radiology. 2019;291(1):15–20. 10.1148/radiol.2019181113.
- Bickelhaupt S, Jaeger PF, Laun FB, et al. Radiomics based on adapted diffusion kurtosis imaging helps to clarify most mammographic findings suspicious for cancer. Radiology. 2018;287(3):761–770. 10.1148/radiol.2017170273.
- Tagliafico AS, Valdora F, Mariscotti G, et al. An exploratory radiomics analysis on digital breast tomosynthesis in women with mammographically negative dense breasts. Breast. 2018;40:92–96. 10.1016/j.breast.2018.04.016.
- Luo WQ, Huang QX, Huang XW, Hu H, Zeng F, Wang W. Predicting breast cancer in breast imaging reporting and data system (bi‑rads) ultrasound category 4 or 5 lesions: A nomogram combining radiomics and BI‑RADS. Sci Rep. 2019;9:11921. 10.1038/s41598-019-48488-4.
- Lafcı O, Celepli P, Seher Öztekin P, Koşar PN. DCE‑MRI radiomics analysis in differentiating luminal A and luminal B breast cancer molecular subtypes. Acad Radiol. 2023;30(1):22–29. 10.1016/j.acra.2022.04.004.
- Pesapane F, Agazzi GM, Rotili A, et al. Prediction of the pathological response to neoadjuvant chemotherapy in breast cancer patients with MRI‑radiomics: A systematic review and meta‑analysis. Curr Probl Cancer. 2022;46(5):100883. 10.1016/j.currproblcancer.2022.100883.
- Choudhery S, Gomez‑Cardona D, Favazza CP, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy. Acad Radiol. 2022; 29 Suppl 1 (
Suppl 1 ):S145–154. 10.1016/j.acra.2020.10.020. - Yu Y, Tan Y, Xie C, et al. Development and validation of a preoperative magnetic resonance imaging radiomics‑based signature to predict axillary lymph node metastasis and disease‑free survival in patients with early‑stage breast cancer. JAMA Netw Open. 2020;3(12):e2028086. 10.1001/jamanetworkopen.2020.28086.
- Cattell R, Ying J, Lei L, et al. Preoperative prediction of lymph node metastasis using deep learning‑based features. Vis Comput Ind Biomed Art. 2022;5:8. 10.1186/s42492-022-00104-5.
- Park H, Lim Y, Ko ES, et al. Radiomics signature on magnetic resonance imaging: Association with disease‑free survival in patients with invasive breast cancer. Clin Cancer Res. 2018;24(19):4705–4714. 10.1158/1078-0432.CCR-17-3783.
- Mazurowski MA, Saha A, Harowicz MR, et al. Association of distant recurrence‑free survival with algorithmically extracted MRI characteristics in breast cancer. J Magn Reson Imaging. 2019;49(7):e231–240. 10.1002/jmri.26648.
