Have a personal or library account? Click to login
Evaluation of Abdominal CT Obtained Using a Deep Learning-Based Image Reconstruction Engine Compared with CT Using Adaptive Statistical Iterative Reconstruction Cover

Evaluation of Abdominal CT Obtained Using a Deep Learning-Based Image Reconstruction Engine Compared with CT Using Adaptive Statistical Iterative Reconstruction

Open Access
|Apr 2022

References

  1. 1Pontana F, Pagniez J, Duhamel A, et al. Reduced-dose low-voltage chest CT angiography with Sinogram-affirmed iterative reconstruction versus standard-dose filtered back projection. Radiology. 2013; 267: 609618. DOI: 10.1148/radiol.12120414
  2. 2Pontana F, Pagniez J, Flohr T, et al. Chest computed tomography using iterative reconstruction vs. filtered back projection (Part 1): Evaluation of image noise reduction in 32 patients. Eur Radiol. 2011; 21: 627635. DOI: 10.1007/s00330-010-1990-5
  3. 3Singh S, Kalra MK, Hsieh J, et al. Abdominal CT: Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology. 2010; 257: 373383. DOI: 10.1148/radiol.10092212
  4. 4Samei E, Richard S. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Med Phys. 2015; 42:314323. DOI: 10.1118/1.4903899
  5. 5Ott JG, Becce F, Monnin P, Schmidt S, Bochud FO, Verdun FR. Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms. Phys Med Biol. 2014; 59: 40474064. DOI: 10.1088/0031-9155/59/4/4047
  6. 6Greffier J, Frandon J, Larbi A, Beregi JP, Pereira F. CT iterative reconstruction algorithms: A task-based image quality assessment. Eur Radiol. 2020; 30: 487500. DOI: 10.1007/s00330-019-06359-6
  7. 7Lee NK, Kim S, Hong SB, et al. Low-dose CT with the adaptive statistical iterative reconstruction v technique in abdominal organ injury: Comparison with routine-dose CT with filtered back projection. Am J Roentgenol. 2019; 213: 659666. DOI: 10.2214/AJR.18.20827
  8. 8Park C, Choo KS, Kim JH, Nam KJ, Lee JW, Kim JY. Image quality and radiation dose in CT venography using model-based iterative reconstruction at 80 kVp versus adaptive statistical iterative reconstruction-v at 70 kVp. Korean J Radiol. 2019; 20: 11671175. DOI: 10.3348/kjr.2018.0897
  9. 9Ren Q, Dewan SK, Li M, et al. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT. Eur J Radiol. 2012; 81: 25972601. DOI: 10.1016/j.ejrad.2011.12.041
  10. 10Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol. 2015; 204: W384392. DOI: 10.2214/AJR.14.13241
  11. 11Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017; 44: e360e375. DOI: 10.1002/mp.12344
  12. 12Chen H, Zhang Y, Zhang W, et al. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017; 8: 679694. DOI: 10.1364/BOE.8.000679
  13. 13Shin YJ, Chang W, Ye JC, et al. Low-dose abdominal using a deep learning-based denoising algorithm: A comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol. 2020; 21: 356364. DOI: 10.3348/kjr.2019.0413
  14. 14Jensen CT, Liu X, Tamm EP, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: Initial experience. Am J Roentgenol. 2020; 215: 5057. DOI: 10.2214/AJR.19.22332
  15. 15Ehman EC, Yu L, Manduca A, et al. Methods for clinical evaluation of noise reduction techniques in abdominopelvic CT. Radiographics. 2014; 34: 849862. DOI: 10.1148/rg.344135128
  16. 16Kijewski MF, Judy PF. The noise power spectrum of CT images. Physics in Medicine and Biology. 1987; 32: 565575. DOI: 10.1088/0031-9155/32/5/003
  17. 17Friedman SN, Fung GS, Siewerdsen JH, Tsui BM. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med Physics. 2013; 40: 051907. DOI: 10.1118/1.4800795
  18. 18Park C, Choo KS, Jung Y, Jeong HS, Hwang JY, Yun MS. CT iterative vs. deep learning reconstruction: Comparison of noise and sharpness. Eur Radiol. 2021; 31: 31563164. DOI: 10.1007/s00330-020-07358-8
  19. 19Greffier J, Hamard A, Pereira F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: A phantom study. Eur Radiol. 2020; 30: 39513959. DOI: 10.1007/s00330-020-06724-w
DOI: https://doi.org/10.5334/jbsr.2638 | Journal eISSN: 2514-8281
Language: English
Submitted on: Aug 27, 2021
Accepted on: Mar 24, 2022
Published on: Apr 8, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Yeo Jin Yoo, In Young Choi, Suk Keu Yeom, Sang Hoon Cha, Yunsub Jung, Hyun Jong Han, Euddeum Shim, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.