References
- 1Pontana F, Pagniez J, Duhamel A, et al. Reduced-dose low-voltage chest CT angiography with Sinogram-affirmed iterative reconstruction versus standard-dose filtered back projection. Radiology. 2013; 267: 609–618. DOI: 10.1148/radiol.12120414
- 2Pontana F, Pagniez J, Flohr T, et al. Chest computed tomography using iterative reconstruction vs. filtered back projection (Part 1): Evaluation of image noise reduction in 32 patients. Eur Radiol. 2011; 21: 627–635. DOI: 10.1007/s00330-010-1990-5
- 3Singh S, Kalra MK, Hsieh J, et al. Abdominal CT: Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology. 2010; 257: 373–383. DOI: 10.1148/radiol.10092212
- 4Samei E, Richard S. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Med Phys. 2015; 42:314–323. DOI: 10.1118/1.4903899
- 5Ott JG, Becce F, Monnin P, Schmidt S, Bochud FO, Verdun FR. Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms. Phys Med Biol. 2014; 59: 4047–4064. DOI: 10.1088/0031-9155/59/4/4047
- 6Greffier J, Frandon J, Larbi A, Beregi JP, Pereira F. CT iterative reconstruction algorithms: A task-based image quality assessment. Eur Radiol. 2020; 30: 487–500. DOI: 10.1007/s00330-019-06359-6
- 7Lee NK, Kim S, Hong SB, et al. Low-dose CT with the adaptive statistical iterative reconstruction v technique in abdominal organ injury: Comparison with routine-dose CT with filtered back projection. Am J Roentgenol. 2019; 213: 659–666. DOI: 10.2214/AJR.18.20827
- 8Park C, Choo KS, Kim JH, Nam KJ, Lee JW, Kim JY. Image quality and radiation dose in CT venography using model-based iterative reconstruction at 80 kVp versus adaptive statistical iterative reconstruction-v at 70 kVp. Korean J Radiol. 2019; 20: 1167–1175. DOI: 10.3348/kjr.2018.0897
- 9Ren Q, Dewan SK, Li M, et al. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT. Eur J Radiol. 2012; 81: 2597–2601. DOI: 10.1016/j.ejrad.2011.12.041
- 10Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol. 2015; 204: W384–392. DOI: 10.2214/AJR.14.13241
- 11Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017; 44: e360–e375. DOI: 10.1002/mp.12344
- 12Chen H, Zhang Y, Zhang W, et al. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017; 8: 679–694. DOI: 10.1364/BOE.8.000679
- 13Shin YJ, Chang W, Ye JC, et al. Low-dose abdominal using a deep learning-based denoising algorithm: A comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol. 2020; 21: 356–364. DOI: 10.3348/kjr.2019.0413
- 14Jensen CT, Liu X, Tamm EP, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: Initial experience. Am J Roentgenol. 2020; 215: 50–57. DOI: 10.2214/AJR.19.22332
- 15Ehman EC, Yu L, Manduca A, et al. Methods for clinical evaluation of noise reduction techniques in abdominopelvic CT. Radiographics. 2014; 34: 849–862. DOI: 10.1148/rg.344135128
- 16Kijewski MF, Judy PF. The noise power spectrum of CT images. Physics in Medicine and Biology. 1987; 32: 565–575. DOI: 10.1088/0031-9155/32/5/003
- 17Friedman SN, Fung GS, Siewerdsen JH, Tsui BM. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med Physics. 2013; 40: 051907. DOI: 10.1118/1.4800795
- 18Park C, Choo KS, Jung Y, Jeong HS, Hwang JY, Yun MS. CT iterative vs. deep learning reconstruction: Comparison of noise and sharpness. Eur Radiol. 2021; 31: 3156–3164. DOI: 10.1007/s00330-020-07358-8
- 19Greffier J, Hamard A, Pereira F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: A phantom study. Eur Radiol. 2020; 30: 3951–3959. DOI: 10.1007/s00330-020-06724-w
