Have a personal or library account? Click to login
Comparing Visual Scoring of Lung Injury with a Quantifying AI-Based Scoring in Patients with COVID-19 Cover

Comparing Visual Scoring of Lung Injury with a Quantifying AI-Based Scoring in Patients with COVID-19

Open Access
|Apr 2021

References

  1. 1Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review. Eur Radiol. 2020; 30: 43814389. DOI: 10.1007/s00330-020-06801-0
  2. 2Li K, Fang Y, Li W, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 2020; 30: 44074416. DOI: 10.1007/s00330-020-06817-6
  3. 3Zhou S, Zhu T, Wang Y, Xia L. Imaging features and evolution on CT in 100 COVID-19 pneumonia patients in Wuhan, China. Eur Radiol. 2020; 30: 54465454. DOI: 10.1007/s00330-020-06879-6
  4. 4Lessmann N, Sánchez CI, Beenen L, et al. Automated assessment of COVID-19 reporting and data system and chest CT severity scores in patients suspected of having COVID-19 using artificial intelligence. Radiology. 2020; 298(1): e18e28. DOI: 10.1148/radiol.2020202439
  5. 5Huang L, Han R, Ai T, et al. Serial quantitative chest CT assessment of COVID-19: Deep-learning approach. Radiology: Cardiothoracic Imaging. 2020; 2(2): e200075. DOI: 10.1148/ryct.2020200075
  6. 6Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology. 2020; 296(2): e65e71. DOI: 10.1148/radiol.2020200905
  7. 7Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neuronal networks. Comput Biol Med. 2020; 121: 103795. DOI: 10.1016/j.compbiomed.2020.103795
  8. 8Wang S, Zha Y, Li W, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J. 2020; 56(2): 2000775. DOI: 10.1183/13993003.00775-2020
  9. 9Mei X, Lee HC, Diao KY, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020; 26: 12241228. DOI: 10.1038/s41591-020-0931-3
  10. 10Rubin G, Ryerson C, Haramati L, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleishner Society. Radiology. 2020; 296(1): 172180. DOI: 10.1148/radiol.2020201365
  11. 11Chaganti S, Grenier P, Balachandran A, et al. Automated wuantification of CT patterns associated with COVID-19 from chest CT. Radiology: Artificial Intelligence. 2020; 2(4). DOI: 10.1148/ryai.2020200048
  12. 12Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection. Radiology. 2020; 295(3): 200463. DOI: 10.1148/radiol.2020200463
  13. 13Laghi A. Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence. Lancet Digit Health. 2020; 2(5): e225. DOI: 10.1016/S2589-7500(20)30079-0
  14. 14Waller JV, Kaur P, Tucker A, et al. Diagnostic tools for coronavirus disease (COVID-19): Comparing CT and RT-PCR viral nucleic acid testing. AJR Am J Roentgenol. 2020; 215(4): 834838. DOI: 10.2214/AJR.20.23418
DOI: https://doi.org/10.5334/jbsr.2330 | Journal eISSN: 2514-8281
Language: English
Submitted on: Oct 19, 2020
Accepted on: Mar 13, 2021
Published on: Apr 5, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Charlotte Biebau, Adriana Dubbeldam, Lesley Cockmartin, Walter Coudyzer, Johan Coolen, Johny Verschakelen, Walter De Wever, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.