References
- 1Adilov, N., Alexander, P. J., & Cunningham, B. M. (2015). An Economic Analysis of Earth Orbit Pollution. Environmental & Resource Economics, 60(1), 81–98. DOI: 10.1007/s10640-013-9758-4
- 2Adilov, N., Alexander, P. J., & Cunningham, B. M. (2018). An economic “Kessler Syndrome”: A dynamic model of earth orbit debris. Economics Letters, 166, 79–82. DOI: 10.1016/j.econlet.2018.02.025
- 3Adilov, N., Alexander, P. J., & Cunningham, B. M. (2020). The economics of orbital debris generation, accumulation, mitigation, and remediation. Journal of Space Safety Engineering, 7(3), 447–450. DOI: 10.1016/j.jsse.2020.07.016
- 4Atkins, P. W., & de Paula, J. (2014).
Atkins’ Physical Chemistry . Oxford University Press. - 5Bernhard, P., Deschamps, M., & Zaccour, G. (2023). Large satellite constellations and space debris: Exploratory analysis of strategic management of the space commons. European Journal of Operational Research, 304(3), 1140–1157. DOI: 10.1016/j.ejor.2022.04.030
- 6Bongers, A., & Torres, J. L. (2023a). Orbital debris and the market for satellites. Ecological Economics: The Journal of the International Society for Ecological Economics, 209,
107831 . DOI: 10.1016/j.ecolecon.2023.107831 - 7Bongers, A., & Torres, J. L. (2023b). Star Wars: Anti-Satellite Weapons and Orbital Debris. Defence and Peace Economics, 1–20. DOI: 10.1080/10242694.2023.2208020
- 8Bradley, A. M., & Wein, L. M. (2009). Space debris: Assessing risk and responsibility. Advances in Space Research: The Official Journal of the Committee on Space Research, 43(9), 1372–1390. DOI: 10.1016/j.asr.2009.02.006
- 9Carbon, S., & Larson, E. (2005). Modeling of Risk to Aircraft from Space Vehicle Debris. Proceedings of the AIAA Atmospheric Flight Mechanics Conference Exhibit,
6506 . DOI: 10.2514/6.2005-6506 - 10Cox, M. (2014). Understanding large social-ecological systems: introducing the SESMAD project. International Journal of the Commons, 8(2), 265–276. DOI: 10.18352/ijc.406
- 11Drmola, J., & Hubik, T. (2018). Kessler Syndrome: System Dynamics Model. Space Policy, 44–45, 29–39. DOI: 10.1016/j.spacepol.2018.03.003
- 12ESA Space Debris Office. (2023). ESA’s Annual Space Environment Report (7). European Space Agency.
https://sdup.esoc.esa.int/discosweb/statistics/ - 13Farinella, P., & Cordelli, A. (1991). The proliferation of orbiting fragments: A simple mathematical model. Science and Global Security, 2(4), 365–378. DOI: 10.1080/08929889108426373
- 14Federal Communications Commission. (2022). Space Innovation Mitigation of Orbital Debris in the New Space Age. FCC 22–74(FCC-22-74).
https://docs.fcc.gov/public/attachments/FCC-22-74A1.pdf - 15Flegel, S., Gelhaus, J., Wiedemann, C., Vörsmann, P., Oswald, M., Stabroth, S., Klinkrad, H., & Krag, H. (2009). The MASTER-2009 Space Debris Environment Model. Fifth European Conference on Space Debris, 672, 1–8.
- 16Fleischman, F. D., Ban, N. C., Evans, L. S., Epstein, G., Garcia-Lopez, G., & Villamayor-Tomas, S. (2014). Governing large-scale social-ecological systems: Lessons from five cases. International Journal of the Commons, 8(2),
428 . DOI: 10.18352/ijc.416 - 17Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. DOI: 10.1146/annurev.ecolsys.35.021103.105711
- 18Folke, C., Österblom, H., Jouffray, J.-B., Lambin, E. F., Adger, W. N., Scheffer, M., Crona, B. I., Nyström, M., Levin, S. A., Carpenter, S. R., Anderies, J. M., Chapin, S.,
3rd , Crépin, A.-S., Dauriach, A., Galaz, V., Gordon, L. J., Kautsky, N., Walker, B. H., Watson, J. R., … de Zeeuw, A. (2019). Transnational corporations and the challenge of biosphere stewardship. Nature Ecology & Evolution, 3(10), 1396–1403. DOI: 10.1038/s41559-019-0978-z - 19Grzelka, Z., & Wagner, J. (2019). Managing satellite debris in low-earth orbit: Incentivizing ex ante satellite quality and ex post take-back programs. Environmental & Resource Economics, 74(1), 319–336. DOI: 10.1007/s10640-019-00320-3
- 20Orbital Sustainability 5 Act of 2023, S.447, 118th Congress, 1st session. (2023).
https://www.commerce.senate.gov/services/files/E6EA1EBD-D68B-41B5-973D-B36A46F576DE - 21IADC. (2007). Space Debris Mitigation Guidelines. Steering Group and Working Group 4.
- 22Jain, A., & Rao, A. (2022). International cooperation and competition in orbit-use management. In arXiv [econ.TH]. arXiv.
http://arxiv.org/abs/2205.03926 - 23Kessler, D. J., & Cour-Palais, B. G. (1978). Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research: Space Physics, 86(A6), 2637–2646. DOI: 10.1029/JA083iA06p02637
- 24Kessler, D. J., Johnson, N. L., Liou, J.-C., & Matney, M. (2010). The Kessler Syndrome: Implications to Future Space operations. Advances in the Astronautical Sciences, 138(8).
- 25Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Wittig, A., Sapera, A., & Izzo, D. (2018). Space Debris Removal: Learning to Cooperate and the Price of Anarchy. Frontiers in Robotics and AI, 5,
54 . DOI: 10.3389/frobt.2018.00054 - 26Klinkrad, H. (1991). DISCOS – ESA’s database and information system characterising objects in space. Advances in Space Research: The Official Journal of the Committee on Space Research, 11(12), 43–52. DOI: 10.1016/0273-1177(91)90541-Q
- 27Klinkrad, H. (2006). Space Debris: Models and Risk Analysis. Springer Science & Business Media.
- 28Kommel, R. K., Peter, A., Puig-Hall, M., & Riesbeck, L. (2020). Exploring insights from emerging space agencies. Center for Strategic and International Studies(CSIS) Publications.
http://aerospace.csis.org/wp-content/uploads/2020/10/2020_GWU_ExploringInsights_FINAL_2nd-Edits-101920-compressed.pdf - 29Krag, H., Klinkrad, H., Schildknecht, T., Jehn, R., & Oswald, M. (2008). Improving GEO Space Debris Environment Modelling with the Help of ESA Space Debris Telescope Observations. 37,
1610 . - 30Kuhn, L., Schingler, J. K., & Hubbard, K. M. (2022). Res Lunae: Characterizing Diverse Lunar Resource Systems Using the Social-Ecological System Framework. New Space, 10(2), 155–165. DOI: 10.1089/space.2021.0054
- 31Kurt, J. (2015). Triumph of the space commons: Addressing the impending space debris crisis without an international treaty. William & Mary Environmental Law & Policy Review, 40(1), 305–334.
- 32Larson, E. (2005). Large Region Population Sheltering Models for Space Debris Risk Analysis. In AIAA Atmospheric Flight Mechanics Conference and Exhibit.
American Institute of Aeronautics and Astronautics . DOI: 10.2514/6.2005-6322 - 33Lawrence, A., Rawls, M. L., Jah, M., Boley, A., Di Vruno, F., Garrington, S., Kramer, M., Lawler, S., Lowenthal, J., McDowell, J., & McCaughrean, M. (2022). The case for space environmentalism. Nature Astronomy, 6(4), 428–435. DOI: 10.1038/s41550-022-01655-6
- 34Lenton, T. M. (2013). Environmental Tipping Points. Annual Review of Environment and Resources, 38(1), 1–29. DOI: 10.1146/annurev-environ-102511-084654
- 35Levin, S., Xepapadeas, T., Crépin, A.-S., Norberg, J., de Zeeuw, A., Folke, C., Hughes, T., Arrow, K., Barrett, S., Daily, G., Ehrlich, P., Kautsky, N., Mäler, K.-G., Polasky, S., Troell, M., Vincent, J. R., & Walker, B. (2013). Social-ecological systems as complex adaptive systems: modeling and policy implications. Environment and Development Economics, 18(2), 111–132. DOI: 10.1017/S1355770X12000460
- 36Lewis, H. G., Swinerd, G., Williams, N., & Gittins, G. (2001). DAMAGE: a dedicated GEO debris model framework. Space Debris.
https://adsabs.harvard.edu/full/2001ESASP.473..373L - 37Li, J.-S., Yang, Z., & Luo, Y.-Z. (2022). A review of space-object collision probability computation methods. Astrodynamics, 6(2), 95–120. DOI: 10.1007/s42064-021-0125-x
- 38Lisy, C., Sadhwani, P., Chua, K., Huang, A., & Lohmeyer, W. (2023). FCC Five Year Deorbit Compliance Tools for Standard Low Earth Orbiting SmallSats Employing Passive Re-Entry Techniques. Small Satellite Conference.
https://digitalcommons.usu.edu/smallsat/2023/all2023/256/ - 39Macauley, M. K. (2015). The economics of space debris: Estimating the costs and benefits of debris mitigation. Acta Astronautica, 115, 160–164. DOI: 10.1016/j.actaastro.2015.05.006
- 40Mark, C. P., & Kamath, S. (2019). Review of Active Space Debris Removal Methods. Space Policy, 47, 194–206. DOI: 10.1016/j.spacepol.2018.12.005
- 41Mathias, J.-D., Anderies, J. M., Baggio, J., Hodbod, J., Huet, S., Janssen, M. A., Milkoreit, M., & Schoon, M. (2020). Exploring non-linear transition pathways in social-ecological systems. Scientific Reports, 10(1),
4136 . DOI: 10.1038/s41598-020-59713-w - 42Mendenhall, E. (2018). Treating Outer Space Like a Place: A Case for Rejecting Other Domain Analogies. Astropolitics, 16(2), 97–118. DOI: 10.1080/14777622.2018.1484650
- 43Milkoreit, M., Hodbod, J., Baggio, J., Benessaiah, K., Calderón-Contreras, R., Donges, J. F., Mathias, J.-D., Rocha, J. C., Schoon, M., & Werners, S. E. (2018). Defining tipping points for social-ecological systems scholarship—an interdisciplinary literature review. Environmental Research Letters: ERL [Web Site], 13(3),
033005 . DOI: 10.1088/1748-9326/aaaa75 - 44Morin, J.-F., & Richard, B. (2021). Astro-environmentalism: Towards a polycentric governance of space debris. Global Policy, 12(4), 568–573. DOI: 10.1111/1758-5899.12950
- 45Muller, C., Rozanova, O., & Urdanoz, M. (2011). Economic valuation of debris removal. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA’s Meteoroid and Orbital Debris Programs. 68th international astronautical congress, national research council. Washington, DC, USA.
https://chaire-sirius.eu/f/Muller-Rozanova-Urdanoz-2017-Economic-Valuation-of-Debris-Removal-IAC-68th-International-Astronautical-Congress-IAC2.pdf - 46Newman, C. J., & Williamson, M. (2018). Space Sustainability: Reframing the Debate. Space Policy, 46, 30–37. DOI: 10.1016/j.spacepol.2018.03.001
- 47Orbital Debris Research and Development Interagency Working Group. (2021). National Orbital Debris Research and Development Plan. United States National Science and Technology Council.
https://trumpwhitehouse.archives.gov/wp-content/uploads/2021/01/National-Orbital-Debris-RD-Plan-2021.pdf - 48Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422. DOI: 10.1126/science.1172133
- 49Palmer, C. (2022). Russian anti-satellite test spotlights space debris danger. Engineering, 12, 3–5. DOI: 10.1016/j.eng.2022.03.005
- 50Patera, R. (2008, August 18). Risk to Commercial Aircraft from Reentering Space Debris. Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. DOI: 10.2514/6.2008-6891
- 51Peeters, W. (2021). Evolution of the Space Economy: Government Space to Commercial Space and New Space. Astropolitics, 19(3), 206–222. DOI: 10.1080/14777622.2021.1984001
- 52Peeters, W., Damp, L., & Williams, P. (2020). Launching Smallsats: The Example of Southern Launch. New Space, 8(4), 201–212. DOI: 10.1089/space.2020.0034
- 53Preiser, R., Biggs, R., De Vos, A., & Folke, C. (2018). Organizing principles for advancing research methods and approaches. Ecology and Society, 23(4).
https://www.jstor.org/stable/26796889 . DOI: 10.5751/ES-10558-230446 - 54Press Release. (2023, July 27). Cantwell, Hickenlooper ORBITS Act to Clean Up Space Junk Heads to Full Senate. U.S. Senate Committee on Commerce, Science, & Transportation.
https://www.commerce.senate.gov/2023/7/cantwell-hickenlooper-orbits-act-to-clean-up-space-junk-heads-to-full-senate - 55Rabitz, F. (2023). Space resources and the politics of international regime formation. International Journal of the Commons, 17(1), 243–255. DOI: 10.5334/ijc.1274
- 56Rao, A., Burgess, M. G., & Kaffine, D. (2020). Orbital-use fees could more than quadruple the value of the space industry. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12756–12762. DOI: 10.1073/pnas.1921260117
- 57Rao, A., & Rondina, G. (2022). The Economics of Orbit Use: Open Access, External Costs, and Runaway Debris Growth. In arXiv [econ.GN]. arXiv.
http://arxiv.org/abs/2202.07442 - 58Rementeria, S. (2022). Power Dynamics in the Age of Space Commercialisation. Space Policy, 60,
101472 . DOI: 10.1016/j.spacepol.2021.101472 - 59Rouillon, S. (2020). A physico-economic model of low earth orbit management. Environmental & Resource Economics, 77(4), 695–723. DOI: 10.1007/s10640-020-00515-z
- 60Sakamoto, H. (2014). Dynamic resource management under the risk of regime shifts. Journal of Environmental Economics and Management, 68(1), 1–19. DOI: 10.1016/j.jeem.2014.01.003
- 61Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M., & Vandermeer, J. (2012). Anticipating Critical Transitions. Science, 338(6105), 344–348. DOI: 10.1126/science.1225244
- 62Tallis, J. (2015). Remediating space debris: Legal and Technical Barriers. Strategic Studies Quarterly, 9(1), 86–99.
- 63Weeden, B. C., & Chow, T. (2012). Taking a common-pool resources approach to space sustainability: A framework and potential policies. Space Policy, 28(3), 166–172. DOI: 10.1016/j.spacepol.2012.06.004
- 64Yap, X.-S., & Truffer, B. (2021). Opportunities and threats of the rapidly developing Space sector on sustainability transitions: Towards a research agenda. GEIST – Geography of Innovation and Sustainability Transitions.
https://ideas.repec.org//p/aoe/wpaper/2102.html - 65Yap, X.-S., & Truffer, B. (2022). Contouring “earth-space sustainability.” Environmental Innovation and Societal Transitions, 44, 185–193. DOI: 10.1016/j.eist.2022.06.004
