Have a personal or library account? Click to login
Tipping Points of Space Debris in Low Earth Orbit Cover

Tipping Points of Space Debris in Low Earth Orbit

Open Access
|Jan 2024

References

  1. 1Adilov, N., Alexander, P. J., & Cunningham, B. M. (2015). An Economic Analysis of Earth Orbit Pollution. Environmental & Resource Economics, 60(1), 8198. DOI: 10.1007/s10640-013-9758-4
  2. 2Adilov, N., Alexander, P. J., & Cunningham, B. M. (2018). An economic “Kessler Syndrome”: A dynamic model of earth orbit debris. Economics Letters, 166, 7982. DOI: 10.1016/j.econlet.2018.02.025
  3. 3Adilov, N., Alexander, P. J., & Cunningham, B. M. (2020). The economics of orbital debris generation, accumulation, mitigation, and remediation. Journal of Space Safety Engineering, 7(3), 447450. DOI: 10.1016/j.jsse.2020.07.016
  4. 4Atkins, P. W., & de Paula, J. (2014). Atkins’ Physical Chemistry. Oxford University Press.
  5. 5Bernhard, P., Deschamps, M., & Zaccour, G. (2023). Large satellite constellations and space debris: Exploratory analysis of strategic management of the space commons. European Journal of Operational Research, 304(3), 11401157. DOI: 10.1016/j.ejor.2022.04.030
  6. 6Bongers, A., & Torres, J. L. (2023a). Orbital debris and the market for satellites. Ecological Economics: The Journal of the International Society for Ecological Economics, 209, 107831. DOI: 10.1016/j.ecolecon.2023.107831
  7. 7Bongers, A., & Torres, J. L. (2023b). Star Wars: Anti-Satellite Weapons and Orbital Debris. Defence and Peace Economics, 120. DOI: 10.1080/10242694.2023.2208020
  8. 8Bradley, A. M., & Wein, L. M. (2009). Space debris: Assessing risk and responsibility. Advances in Space Research: The Official Journal of the Committee on Space Research, 43(9), 13721390. DOI: 10.1016/j.asr.2009.02.006
  9. 9Carbon, S., & Larson, E. (2005). Modeling of Risk to Aircraft from Space Vehicle Debris. Proceedings of the AIAA Atmospheric Flight Mechanics Conference Exhibit, 6506. DOI: 10.2514/6.2005-6506
  10. 10Cox, M. (2014). Understanding large social-ecological systems: introducing the SESMAD project. International Journal of the Commons, 8(2), 265276. DOI: 10.18352/ijc.406
  11. 11Drmola, J., & Hubik, T. (2018). Kessler Syndrome: System Dynamics Model. Space Policy, 44–45, 2939. DOI: 10.1016/j.spacepol.2018.03.003
  12. 12ESA Space Debris Office. (2023). ESA’s Annual Space Environment Report (7). European Space Agency. https://sdup.esoc.esa.int/discosweb/statistics/
  13. 13Farinella, P., & Cordelli, A. (1991). The proliferation of orbiting fragments: A simple mathematical model. Science and Global Security, 2(4), 365378. DOI: 10.1080/08929889108426373
  14. 14Federal Communications Commission. (2022). Space Innovation Mitigation of Orbital Debris in the New Space Age. FCC 2274(FCC-22-74). https://docs.fcc.gov/public/attachments/FCC-22-74A1.pdf
  15. 15Flegel, S., Gelhaus, J., Wiedemann, C., Vörsmann, P., Oswald, M., Stabroth, S., Klinkrad, H., & Krag, H. (2009). The MASTER-2009 Space Debris Environment Model. Fifth European Conference on Space Debris, 672, 18.
  16. 16Fleischman, F. D., Ban, N. C., Evans, L. S., Epstein, G., Garcia-Lopez, G., & Villamayor-Tomas, S. (2014). Governing large-scale social-ecological systems: Lessons from five cases. International Journal of the Commons, 8(2), 428. DOI: 10.18352/ijc.416
  17. 17Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. DOI: 10.1146/annurev.ecolsys.35.021103.105711
  18. 18Folke, C., Österblom, H., Jouffray, J.-B., Lambin, E. F., Adger, W. N., Scheffer, M., Crona, B. I., Nyström, M., Levin, S. A., Carpenter, S. R., Anderies, J. M., Chapin, S., 3rd, Crépin, A.-S., Dauriach, A., Galaz, V., Gordon, L. J., Kautsky, N., Walker, B. H., Watson, J. R., … de Zeeuw, A. (2019). Transnational corporations and the challenge of biosphere stewardship. Nature Ecology & Evolution, 3(10), 13961403. DOI: 10.1038/s41559-019-0978-z
  19. 19Grzelka, Z., & Wagner, J. (2019). Managing satellite debris in low-earth orbit: Incentivizing ex ante satellite quality and ex post take-back programs. Environmental & Resource Economics, 74(1), 319336. DOI: 10.1007/s10640-019-00320-3
  20. 20Orbital Sustainability 5 Act of 2023, S.447, 118th Congress, 1st session. (2023). https://www.commerce.senate.gov/services/files/E6EA1EBD-D68B-41B5-973D-B36A46F576DE
  21. 21IADC. (2007). Space Debris Mitigation Guidelines. Steering Group and Working Group 4.
  22. 22Jain, A., & Rao, A. (2022). International cooperation and competition in orbit-use management. In arXiv [econ.TH]. arXiv. http://arxiv.org/abs/2205.03926
  23. 23Kessler, D. J., & Cour-Palais, B. G. (1978). Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research: Space Physics, 86(A6), 26372646. DOI: 10.1029/JA083iA06p02637
  24. 24Kessler, D. J., Johnson, N. L., Liou, J.-C., & Matney, M. (2010). The Kessler Syndrome: Implications to Future Space operations. Advances in the Astronautical Sciences, 138(8).
  25. 25Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Wittig, A., Sapera, A., & Izzo, D. (2018). Space Debris Removal: Learning to Cooperate and the Price of Anarchy. Frontiers in Robotics and AI, 5, 54. DOI: 10.3389/frobt.2018.00054
  26. 26Klinkrad, H. (1991). DISCOS – ESA’s database and information system characterising objects in space. Advances in Space Research: The Official Journal of the Committee on Space Research, 11(12), 4352. DOI: 10.1016/0273-1177(91)90541-Q
  27. 27Klinkrad, H. (2006). Space Debris: Models and Risk Analysis. Springer Science & Business Media.
  28. 28Kommel, R. K., Peter, A., Puig-Hall, M., & Riesbeck, L. (2020). Exploring insights from emerging space agencies. Center for Strategic and International Studies(CSIS) Publications. http://aerospace.csis.org/wp-content/uploads/2020/10/2020_GWU_ExploringInsights_FINAL_2nd-Edits-101920-compressed.pdf
  29. 29Krag, H., Klinkrad, H., Schildknecht, T., Jehn, R., & Oswald, M. (2008). Improving GEO Space Debris Environment Modelling with the Help of ESA Space Debris Telescope Observations. 37, 1610.
  30. 30Kuhn, L., Schingler, J. K., & Hubbard, K. M. (2022). Res Lunae: Characterizing Diverse Lunar Resource Systems Using the Social-Ecological System Framework. New Space, 10(2), 155165. DOI: 10.1089/space.2021.0054
  31. 31Kurt, J. (2015). Triumph of the space commons: Addressing the impending space debris crisis without an international treaty. William & Mary Environmental Law & Policy Review, 40(1), 305334.
  32. 32Larson, E. (2005). Large Region Population Sheltering Models for Space Debris Risk Analysis. In AIAA Atmospheric Flight Mechanics Conference and Exhibit. American Institute of Aeronautics and Astronautics. DOI: 10.2514/6.2005-6322
  33. 33Lawrence, A., Rawls, M. L., Jah, M., Boley, A., Di Vruno, F., Garrington, S., Kramer, M., Lawler, S., Lowenthal, J., McDowell, J., & McCaughrean, M. (2022). The case for space environmentalism. Nature Astronomy, 6(4), 428435. DOI: 10.1038/s41550-022-01655-6
  34. 34Lenton, T. M. (2013). Environmental Tipping Points. Annual Review of Environment and Resources, 38(1), 129. DOI: 10.1146/annurev-environ-102511-084654
  35. 35Levin, S., Xepapadeas, T., Crépin, A.-S., Norberg, J., de Zeeuw, A., Folke, C., Hughes, T., Arrow, K., Barrett, S., Daily, G., Ehrlich, P., Kautsky, N., Mäler, K.-G., Polasky, S., Troell, M., Vincent, J. R., & Walker, B. (2013). Social-ecological systems as complex adaptive systems: modeling and policy implications. Environment and Development Economics, 18(2), 111132. DOI: 10.1017/S1355770X12000460
  36. 36Lewis, H. G., Swinerd, G., Williams, N., & Gittins, G. (2001). DAMAGE: a dedicated GEO debris model framework. Space Debris. https://adsabs.harvard.edu/full/2001ESASP.473..373L
  37. 37Li, J.-S., Yang, Z., & Luo, Y.-Z. (2022). A review of space-object collision probability computation methods. Astrodynamics, 6(2), 95120. DOI: 10.1007/s42064-021-0125-x
  38. 38Lisy, C., Sadhwani, P., Chua, K., Huang, A., & Lohmeyer, W. (2023). FCC Five Year Deorbit Compliance Tools for Standard Low Earth Orbiting SmallSats Employing Passive Re-Entry Techniques. Small Satellite Conference. https://digitalcommons.usu.edu/smallsat/2023/all2023/256/
  39. 39Macauley, M. K. (2015). The economics of space debris: Estimating the costs and benefits of debris mitigation. Acta Astronautica, 115, 160164. DOI: 10.1016/j.actaastro.2015.05.006
  40. 40Mark, C. P., & Kamath, S. (2019). Review of Active Space Debris Removal Methods. Space Policy, 47, 194206. DOI: 10.1016/j.spacepol.2018.12.005
  41. 41Mathias, J.-D., Anderies, J. M., Baggio, J., Hodbod, J., Huet, S., Janssen, M. A., Milkoreit, M., & Schoon, M. (2020). Exploring non-linear transition pathways in social-ecological systems. Scientific Reports, 10(1), 4136. DOI: 10.1038/s41598-020-59713-w
  42. 42Mendenhall, E. (2018). Treating Outer Space Like a Place: A Case for Rejecting Other Domain Analogies. Astropolitics, 16(2), 97118. DOI: 10.1080/14777622.2018.1484650
  43. 43Milkoreit, M., Hodbod, J., Baggio, J., Benessaiah, K., Calderón-Contreras, R., Donges, J. F., Mathias, J.-D., Rocha, J. C., Schoon, M., & Werners, S. E. (2018). Defining tipping points for social-ecological systems scholarship—an interdisciplinary literature review. Environmental Research Letters: ERL [Web Site], 13(3), 033005. DOI: 10.1088/1748-9326/aaaa75
  44. 44Morin, J.-F., & Richard, B. (2021). Astro-environmentalism: Towards a polycentric governance of space debris. Global Policy, 12(4), 568573. DOI: 10.1111/1758-5899.12950
  45. 45Muller, C., Rozanova, O., & Urdanoz, M. (2011). Economic valuation of debris removal. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA’s Meteoroid and Orbital Debris Programs. 68th international astronautical congress, national research council. Washington, DC, USA. https://chaire-sirius.eu/f/Muller-Rozanova-Urdanoz-2017-Economic-Valuation-of-Debris-Removal-IAC-68th-International-Astronautical-Congress-IAC2.pdf
  46. 46Newman, C. J., & Williamson, M. (2018). Space Sustainability: Reframing the Debate. Space Policy, 46, 3037. DOI: 10.1016/j.spacepol.2018.03.001
  47. 47Orbital Debris Research and Development Interagency Working Group. (2021). National Orbital Debris Research and Development Plan. United States National Science and Technology Council. https://trumpwhitehouse.archives.gov/wp-content/uploads/2021/01/National-Orbital-Debris-RD-Plan-2021.pdf
  48. 48Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419422. DOI: 10.1126/science.1172133
  49. 49Palmer, C. (2022). Russian anti-satellite test spotlights space debris danger. Engineering, 12, 35. DOI: 10.1016/j.eng.2022.03.005
  50. 50Patera, R. (2008, August 18). Risk to Commercial Aircraft from Reentering Space Debris. Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. DOI: 10.2514/6.2008-6891
  51. 51Peeters, W. (2021). Evolution of the Space Economy: Government Space to Commercial Space and New Space. Astropolitics, 19(3), 206222. DOI: 10.1080/14777622.2021.1984001
  52. 52Peeters, W., Damp, L., & Williams, P. (2020). Launching Smallsats: The Example of Southern Launch. New Space, 8(4), 201212. DOI: 10.1089/space.2020.0034
  53. 53Preiser, R., Biggs, R., De Vos, A., & Folke, C. (2018). Organizing principles for advancing research methods and approaches. Ecology and Society, 23(4). https://www.jstor.org/stable/26796889. DOI: 10.5751/ES-10558-230446
  54. 54Press Release. (2023, July 27). Cantwell, Hickenlooper ORBITS Act to Clean Up Space Junk Heads to Full Senate. U.S. Senate Committee on Commerce, Science, & Transportation. https://www.commerce.senate.gov/2023/7/cantwell-hickenlooper-orbits-act-to-clean-up-space-junk-heads-to-full-senate
  55. 55Rabitz, F. (2023). Space resources and the politics of international regime formation. International Journal of the Commons, 17(1), 243255. DOI: 10.5334/ijc.1274
  56. 56Rao, A., Burgess, M. G., & Kaffine, D. (2020). Orbital-use fees could more than quadruple the value of the space industry. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 1275612762. DOI: 10.1073/pnas.1921260117
  57. 57Rao, A., & Rondina, G. (2022). The Economics of Orbit Use: Open Access, External Costs, and Runaway Debris Growth. In arXiv [econ.GN]. arXiv. http://arxiv.org/abs/2202.07442
  58. 58Rementeria, S. (2022). Power Dynamics in the Age of Space Commercialisation. Space Policy, 60, 101472. DOI: 10.1016/j.spacepol.2021.101472
  59. 59Rouillon, S. (2020). A physico-economic model of low earth orbit management. Environmental & Resource Economics, 77(4), 695723. DOI: 10.1007/s10640-020-00515-z
  60. 60Sakamoto, H. (2014). Dynamic resource management under the risk of regime shifts. Journal of Environmental Economics and Management, 68(1), 119. DOI: 10.1016/j.jeem.2014.01.003
  61. 61Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M., & Vandermeer, J. (2012). Anticipating Critical Transitions. Science, 338(6105), 344348. DOI: 10.1126/science.1225244
  62. 62Tallis, J. (2015). Remediating space debris: Legal and Technical Barriers. Strategic Studies Quarterly, 9(1), 8699.
  63. 63Weeden, B. C., & Chow, T. (2012). Taking a common-pool resources approach to space sustainability: A framework and potential policies. Space Policy, 28(3), 166172. DOI: 10.1016/j.spacepol.2012.06.004
  64. 64Yap, X.-S., & Truffer, B. (2021). Opportunities and threats of the rapidly developing Space sector on sustainability transitions: Towards a research agenda. GEIST – Geography of Innovation and Sustainability Transitions. https://ideas.repec.org//p/aoe/wpaper/2102.html
  65. 65Yap, X.-S., & Truffer, B. (2022). Contouring “earth-space sustainability.” Environmental Innovation and Societal Transitions, 44, 185193. DOI: 10.1016/j.eist.2022.06.004
DOI: https://doi.org/10.5334/ijc.1275 | Journal eISSN: 1875-0281
Language: English
Submitted on: Apr 8, 2023
Accepted on: Dec 18, 2023
Published on: Jan 11, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Keiko Nomura, Simon Rella, Haily Merritt, Mathieu Baltussen, Darcy Bird, Annika Tjuka, Dan Falk, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.