Have a personal or library account? Click to login
Determinants of Mortality from Cardiovascular Disease in the Slums of Nairobi, Kenya Cover

Determinants of Mortality from Cardiovascular Disease in the Slums of Nairobi, Kenya

Open Access
|Apr 2020

References

  1. 1Roth GA, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015; 132(17): 16671678. DOI: 10.1161/CIRCULATIONAHA.114.008720
  2. 2Strong K, et al. Preventing chronic diseases: How many lives can we save? The Lancet. 2005; 366(9496): 15781582. DOI: 10.1016/S0140-6736(05)67341-2
  3. 3Mensah GA, et al. Mortality from cardiovascular diseases in sub-Saharan Africa, 1990–2013: a systematic analysis of data from the Global Burden of Disease Study 2013. Cardiovascular Journal of Africa. 2015; 26(2 Suppl 1): S610. DOI: 10.5830/CVJA-2015-036
  4. 4Roth GA, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. New England Journal of Medicine. 2015; 372(14): 133341. DOI: 10.1056/NEJMoa1406656
  5. 5Assah FK, et al. Urbanization, Physical Activity, and Metabolic Health in Sub-Saharan Africa. Diabetes Care. 2011; 34(2): 491. DOI: 10.2337/dc10-0990
  6. 6Sodjinou R, et al. Obesity and cardio-metabolic risk factors in urban adults of Benin: relationship with socio-economic status, urbanisation, and lifestyle patterns. BMC Public Health. 2008; 8(1): 84. DOI: 10.1186/1471-2458-8-84
  7. 7UNHABITAT. The state of African Cities 2014: Re-imagining sustainable urban transitions. Nairobi, Kenya: United Nations Human Settlements Programme, 2014.
  8. 8UN Habitat. Urbanization and development: emerging futures; world cities report 2016, in UN-Habitat. 2016. Nairobi, Kenya: UN-Habitat.
  9. 9Sliwa K, et al. Impact of Socioeconomic Status, Ethnicity, and Urbanization on Risk Factor Profiles of Cardiovascular Disease in Africa. Circulation. 2016; 133(12): 1199208. DOI: 10.1161/CIRCULATIONAHA.114.008730
  10. 10Kaplan GA, Keil JE. Socioeconomic factors and cardiovascular disease: A review of the literature. Circulation. 1993; 88(4): 19731998. DOI: 10.1161/01.CIR.88.4.1973
  11. 11Waxman A. Why a global strategy on diet, physical activity and health? In Nutrition and Fitness: Mental Health, Aging, and the Implementation of a Healthy Diet and Physical Activity Lifestyle. Karger Publishers; 2005. 162166. DOI: 10.1159/000088302
  12. 12Doulougou B, et al. Differences in hypertension between informal and formal areas of Ouagadougou, a sub-Saharan African city. BMC Public Health. 2014; 14: 893. DOI: 10.1186/1471-2458-14-893
  13. 13Yusuf S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. The Lancet. 2004; 364(9438): 937952. DOI: 10.1016/S0140-6736(04)17018-9
  14. 14Bobak M, et al. Socioeconomic status and cardiovascular risk factors in the Czech Republic. International Journal of Epidemiology. 1999; 28(1): 4652. DOI: 10.1093/ije/28.1.46
  15. 15Kivimäki M, et al. Socioeconomic position in childhood and adult cardiovascular risk factors, vascular structure, and function: cardiovascular risk in young Finns study. Heart. 2006; 92(4): 474. DOI: 10.1136/hrt.2005.067108
  16. 16Suls J, Bunde J. Anger, anxiety, and depression as risk factors for cardiovascular disease: The problems and implications of overlapping affective dispositions. Psychological Bulletin. 2005; 131(2): 260. DOI: 10.1037/0033-2909.131.2.260
  17. 17D’Agostino RB, et al. General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation. 2008; 117(6): 743753. DOI: 10.1161/CIRCULATIONAHA.107.699579
  18. 18Ayah R, et al. A population-based survey of prevalence of diabetes and correlates in an urban slum community in Nairobi, Kenya. BMC Public Health. 2013; 13(1): 371. DOI: 10.1186/1471-2458-13-371
  19. 19Joshi MD, et al. Prevalence of hypertension and associated cardiovascular risk factors in an urban slum in Nairobi, Kenya: A population-based survey. BMC Public Health. 2014; 14(1): 1177. DOI: 10.1186/1471-2458-14-1177
  20. 20Haregu TN, et al. Interlinkage among cardio-metabolic disease markers in an urban poor setting in Nairobi, Kenya. Global Health Action. 2016; 9. DOI: 10.3402/gha.v9.30626
  21. 21Haregu TN, et al. Co-occurrence of behavioral risk factors of common non-communicable diseases among urban slum dwellers in Nairobi, Kenya. Global Health Action. 2015; 8: 28697. DOI: 10.3402/gha.v8.28697
  22. 22Oti SO, et al. The magnitude of diabetes and its association with obesity in the slums of Nairobi, Kenya: results from a cross-sectional survey. Tropical Medicine & International Health. 2013; 18(12): 15201530. DOI: 10.1111/tmi.12200
  23. 23Haregu TN, et al. The connection between non-communicable disease risk factors and risk perception among urban slum dwellers in Nairobi, Kenya. African Population Studies. 2016; 30(3): 30943102. DOI: 10.11564/30-3-924
  24. 24Boateng D, et al. Knowledge and awareness of and perception towards cardiovascular disease risk in sub-Saharan Africa: A systematic review. PLoS One. 2017; 12(12): e0189264. DOI: 10.1371/journal.pone.0189264
  25. 25Wekesah FM, et al. Understanding of and perceptions towards cardiovascular diseases and their risk factors: A qualitative study among residents of urban informal settings in Nairobi. BMJ Open. 2019; 9(6): e026852. DOI: 10.1136/bmjopen-2018-026852
  26. 26Kawada T. Socioeconomic status and cardiovascular disease. International Journal of Cardiology. 2019; 274: 378. DOI: 10.1016/j.ijcard.2018.07.034
  27. 27Janković S, et al. Association of socioeconomic status measured by education, and cardiovascular health: A population-based cross-sectional study. BMJ Open. 2014; 4(7): e005222. DOI: 10.1136/bmjopen-2014-005222
  28. 28Winkleby MA, et al. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. American Journal of Public Health. 1992; 82(6): 816820. DOI: 10.2105/AJPH.82.6.816
  29. 29Beguy D, et al. Health & Demographic Surveillance System Profile: The Nairobi Urban Health and Demographic Surveillance System (NUHDSS). International Journal of Epidemiology. 2015; 44(2): 462471. DOI: 10.1093/ije/dyu251
  30. 30World Health Organization. World Health Organization STEPwise approach to chronic disease risk factor surveillance (STEPS) instrument. Geneva: World Health Organization; 2007.
  31. 31International Diabetes Federation Working Group. IDF clinical practice recommendations for managing type 2 diabetes in primary care. Belgium: International Diabetes Federation Brussels; 2017.
  32. 32Nantsupawat N, et al. Appropriate Total cholesterol cut-offs for detection of abnormal LDL cholesterol and non-HDL cholesterol among low cardiovascular risk population. Lipids in Health and Disease. 2019; 18(1): 2828. DOI: 10.1186/s12944-019-0975-x
  33. 33Soleman N, Chandramohan D, Shibuya K. Verbal autopsy: current practices and challenges. Bulletin of the World Health Organization. 2006; 84: 239245. DOI: 10.2471/BLT.05.027003
  34. 34Byass P, Dao Lan H, Hoang Van M. A probabilistic approach to interpreting verbal autopsies: methodology and preliminary validation in Vietnam. Scandinavian Journal of Public Health. 2003; 31(62_suppl): 3237. DOI: 10.1080/14034950310015086
  35. 35Oti SO, Kyobutungi C. Verbal autopsy interpretation: a comparative analysis of the InterVA model versus physician review in determining causes of death in the Nairobi DSS. Population Health Metrics. 2010; 8(1): 21. DOI: 10.1186/1478-7954-8-21
  36. 36Byass P, et al. Refining a probabilistic model for interpreting verbal autopsy data. Scandinavian Journal of Public Health. 2006; 34(1): 2631. DOI: 10.1080/14034940510032202
  37. 37Zhang Z. Model building strategy for logistic regression: Purposeful selection. Annals of Translational Medicine. 2016; 4(6). DOI: 10.21037/atm.2016.02.15
  38. 38Yusuf S, et al. Global Burden of Cardiovascular Diseases: Part I: General Considerations, the Epidemiologic Transition, Risk Factors, and Impact of Urbanization. Circulation. 2001; 104(22): 27462753. DOI: 10.1161/hc4601.099487
  39. 39Yusuf S, Hawken S, Ounpuu S. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Journal of Cardiopulmonary Rehabilitation and Prevention. 2005; 25(1): 5657. DOI: 10.1097/00008483-200501000-00013
  40. 40Erhardt L. Cigarette smoking: An undertreated risk factor for cardiovascular disease. Atherosclerosis. 2009; 205(1): 2332. DOI: 10.1016/j.atherosclerosis.2009.01.007
  41. 41Williams PT. Physical fitness and activity as separate heart disease risk factors: A meta-analysis. Medicine and Science in Sports and Exercise. 2001; 33(5): 754. DOI: 10.1097/00005768-200105000-00012
  42. 42Li J, Siegrist J. Physical Activity and Risk of Cardiovascular Disease—A Meta-Analysis of Prospective Cohort Studies. International Journal of Environmental Research and Public Health. 2012; 9(2): 391. DOI: 10.3390/ijerph9020391
  43. 43Grimm P. Social Desirability Bias. Wiley International Encyclopedia of Marketing; 2010. DOI: 10.1002/9781444316568.wiem02057
  44. 44Addo J, Smeeth L, Leon D. Smoking patterns in Ghanaian civil servants: changes over three decades. International Journal of Environmental Research and Public Health. 2009; 6(1): 200208. DOI: 10.3390/ijerph6010200
  45. 45McAuley PA, Blair SN. Obesity paradoxes. Journal of Sports Sciences. 2011; 29(8): 773782. DOI: 10.1080/02640414.2011.553965
  46. 46Curtis JP, et al. The Obesity Paradox: Body Mass Index and Outcomes in Patients With Heart Failure. JAMA Internal Medicine. 2005; 165(1): 5561. DOI: 10.1001/archinte.165.1.55
  47. 47Pollitt RA, Rose KM, Kaufman JS. Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: a systematic review. BMC Public Health. 2005; 5(1): 7. DOI: 10.1186/1471-2458-5-7
  48. 48Tyroler HA. The Influence of Socioeconomic Factors on Cardiovascular Disease Risk Factor Development. Preventive Medicine. 1999; 29(6): S36S40. DOI: 10.1006/pmed.1998.0441
  49. 49Katz M, et al. Calculated and perceived cardiovascular risk in asymptomatic subjects submitted to a routine medical evaluation: The perception gap. Eur J Prev Cardiol. 2015; 22(8): 107682. DOI: 10.1177/2047487314543074
  50. 50Webster R, Heeley E. Perceptions of risk: understanding cardiovascular disease. Risk Management and Healthcare Policy. 2010; 3: 4960. DOI: 10.2147/RMHP.S8288
  51. 51Lundborg P, Lindgren B. Do they know what they are doing? Risk perceptions and smoking behaviour among Swedish teenagers. Journal of Risk and Uncertainty. 2004; 28(3): 261286. DOI: 10.1023/B:RISK.0000026098.84109.62
  52. 52de Mestral C, Stringhini S. Socioeconomic status and cardiovascular disease: an update. Current Cardiology Reports. 2017; 19(11): 115. DOI: 10.1007/s11886-017-0917-z
  53. 53Teo K, et al. The Prospective Urban Rural Epidemiology (PURE) study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. American Heart Journal. 2009; 158(1): 17.e1. DOI: 10.1016/j.ahj.2009.04.019
  54. 54Egbujie BA, Igumbor EU, Puoane T. A cross-sectional study of socioeconomic status and cardiovascular disease risk among participants in the Prospective Urban Rural Epidemiological (PURE) Study. South African Medical Journal. 2016; 106(9). DOI: 10.7196/SAMJ.2016.v106i9.10456
  55. 55Pisa PT, et al. Social drift of cardiovascular disease risk factors in Africans from the North West Province of South Africa: The PURE study. Cardiovascular Journal of Africa. 2012; 23(7): 371e388. DOI: 10.5830/CVJA-2012-018
  56. 56Gupta R, et al. Socioeconomic factors and use of secondary preventive therapies for cardiovascular diseases in South Asia: The PURE study. European Journal of Preventive Cardiology. 2014; 22(10): 12611271. DOI: 10.1177/2047487314540386
  57. 57Murphy A, et al. Inequalities in the use of secondary prevention of cardiovascular disease by socioeconomic status: evidence from the PURE observational study. The Lancet Global Health. 2018; 6(3): e292e301. DOI: 10.1016/S2214-109X(18)30031-7
  58. 58GUO J, et al. Influence of socioeconomic status on acute myocardial infarction in the Chinese population: the INTERHEART China study. Chinese Medical Journal. 2012; 125(23): 42144220.
  59. 59Gupta R, et al. Association of Educational, Occupational and Socioeconomic Status with Cardiovascular Risk Factors in Asian Indians: A Cross-Sectional Study. PLoS One. 2012; 7(8): e44098. DOI: 10.1371/journal.pone.0044098
  60. 60Fottrell E. Dying to count: Mortality surveillance in resource-poor settings. Global Health Action. 2009; 2(1): 1926. DOI: 10.3402/gha.v2i0.1926
  61. 61Byass P, et al. Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool. Global Health Action. 2012; 5(1): 19281. DOI: 10.3402/gha.v5i0.19281
DOI: https://doi.org/10.5334/gh.787 | Journal eISSN: 2211-8179
Language: English
Submitted on: Aug 26, 2019
Accepted on: Mar 9, 2020
Published on: Apr 10, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Frederick M. Wekesah, Kerstin Klipstein-Grobusch, Diederick E. Grobbee, Damazo Kadengye, Gershim Asiki, Catherine K. Kyobutungi, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.