Have a personal or library account? Click to login
Integrating Machine Learning Standards in Disseminating Machine Learning Research Cover

Integrating Machine Learning Standards in Disseminating Machine Learning Research

Open Access
|Jan 2026

References

  1. Akhtar, M., Benjelloun, O., Conforti, C., Foschini, L. et al. (2024) ‘Croissant: A metadata format for ML-ready datasets’, Advances in Neural Information Processing Systems, 37, pp. 8213382148. Available at: 10.52202/079017-2610
  2. Armit, C., Tuli, M.A. and Hunter, C.I. (2022) ‘A decade of GigaScience: GigaDB and the Open Data movement’, Gigascience, 11, p. giac053. Available at: 10.1093/gigascience/giac053
  3. Artrith, N., Butler, K.T., Coudert, F.X. et al. (2021) ‘Best practices in machine learning for chemistry’, Nature Chemistry, 13, pp. 505508. Available at: 10.1038/s41557-021-00716-z
  4. Atkins, K., Garzón-Martínez, G.A., Lloyd, A., Doonan, J.H. and Lu, C. (2025) ‘Unlocking the power of AI for phenotyping fruit morphology in Arabidopsis’, Gigascience, 14, p. giae123. Available at: 10.1093/gigascience/giae123
  5. Attafi, O.A., Clementel, D., Kyritsis, K., Capriotti, E. et al. (2024) ‘DOME Registry: Implementing community-wide recommendations for reporting supervised machine learning in biology’, GigaScience, 13, p. giae094. Available at: 10.1093/gigascience/giae094
  6. Clark, T., Caufield, H., Parker, J.A., Al Manir, S. et al. (2024) ‘AI-readiness for biomedical data: Bridge2AI recommendations’, bioRxiv [Preprint], 2024.10.23.619844. Available at: 10.1101/2024.10.23.619844
  7. Collins, G.S., Moons, K.G.M., Dhiman, P., Riley, R.D. et al. (2024) ‘TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods’, BMJ, 385, p. e078378. Available at: 10.1136/bmj-2023-078378
  8. Collins, G.S., Reitsma, J.B., Altman, D.G. and Moons, K.G. (2015) ‘Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement’, BMJ, 350, p. g7594. Available at: 10.1136/bmj.g7594
  9. Data Citation Synthesis Group. (2014) ‘Joint Declaration of Data Citation Principles’, in M. Martone (ed.) San Diego CA: FORCE11. 10.25490/a97f-egyk
  10. Farrell, G., Adamidi, E., Buono, R.A., Anton, M. et al. (2025) ‘Open and sustainable AI: Challenges, opportunities and the road ahead in the life sciences’, arXiv, 2505.16619. Available at: 10.48550/arXiv.2505.16619
  11. Gallifant, J., Afshar, M., Ameen, S., Aphinyanaphongs, Y., Chen, S., Cacciamani, G., Demner-Fushman, D., Dligach, D., Daneshjou, R., Fernandes, C., Hansen, L.H., Landman, A., Lehmann, L., McCoy, L.G., Miller, T., Moreno, A., Munch, N., Restrepo, D., Savova, G., Umeton, R., Gichoya, J.W., Collins, G.S., Moons, K.G.M., Celi, L.A. and Bitterman, D.S. (2025) ‘The TRIPOD-LLM reporting guideline for studies using large language models’, Nature Medicine, 31(1), pp. 6069. Available at: 10.1038/s41591-024-03425-5
  12. González-Beltrán, A., Li, P., Zhao, J., Avila-Garcia, M.S. et al. (2015) ‘From peer-reviewed to peer-reproduced in scholarly publishing: The complementary roles of data models and workflows in bioinformatics’, PLoS One, 10(7), p. e0127612. Available at: 10.1371/journal.pone.0127612
  13. Guo, A., Chen, Z., Li, F. and Luo, Q. (2023) ‘Supporting data for “delineating Regions-of-Interest for mass spectrometry imaging by multimodally corroborated spatial segmentation”’, GigaScience Database. Available at: 10.5524/102374
  14. Guo, D., Yang, D., Zhang, H., Song, J. et al. (2025) ‘DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning’, Nature, 645(8081), pp. 633638. Available at: 10.1038/s41586-025-09422-z
  15. Haller, S., Van Cauter, S., Federau, C., Hedderich, D.M. and Edjlali, M. (2022) ‘The R-AI-DIOLOGY checklist: A practical checklist for evaluation of artificial intelligence tools in clinical neuroradiology’, Neuroradiology, 64(5), pp. 851864. Available at: 10.1007/s00234-021-02890-w
  16. Hatos, A., Quaglia, F., Piovesan, D. and Tosatto S.C.E. (2021) ‘APICURON: A database to credit and acknowledge the work of biocurators’, Database (Oxford), 2021, p. baab019. Available at: 10.1093/database/baab019
  17. Heil, B.J., Hoffman, M.M., Markowetz, F., Lee, S.I., Greene, C.S. and Hicks, S.C. (2021) ‘Reproducibility standards for machine learning in the life sciences’, Nature Methods, 18(10), pp. 11321135. Available at: 10.1038/s41592-021-01256-7
  18. Hernandez-Boussard, T., Bozkurt, S., Ioannidis, J.P.A. and Shah, N.H. (2020) ‘MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care’, Journal of the American Medical Informatics Association, 27(12), pp. 20112015. Available at: 10.1093/jamia/ocaa088
  19. Hugging Face. Dataset Cards. https://huggingface.co/docs/hub/en/datasets-cards.
  20. Hugging Face. Model Cards. https://huggingface.co/docs/hub/en/model-cards.
  21. Jones, D.T. (2019) ‘Setting the standards for machine learning in biology’, Nature Reviews Molecular Cell Biology, 20, pp. 659660. Available at: 10.1038/s41580-019-0176-5
  22. Kakarmath, S., Esteva, A., Arnaout, R., Harvey, H., Kumar, S., Muse, E., Dong, F., Wedlund, L. and Kvedar, J. (2020) ‘Best practices for authors of healthcare-related artificial intelligence manuscripts’, NPJ Digital Medicine, 3(134). Available at: 10.1038/s41746-020-00336-w
  23. Kapoor, S., Cantrell, E.M., Peng, K., Pham, T.H., Bail, C.A., Gundersen, O.E., Hofman, J.M., Hullman, J., Lones, M.A., Malik, M.M., Nanayakkara, P., Poldrack, R.A., Raji, I.D., Roberts, M., Salganik, M.J., Serra-Garcia, M., Stewart, B.M., Vandewiele, G. and Narayanan, A. (2024) ‘REFORMS: Consensus-based recommendations for machine-learning-based science’, Science Advances, 10(18), p. eadk3452. Available at: 10.1126/sciadv.adk3452
  24. Kolbinger, F.R., Veldhuizen, G.P., Zhu, J., Truhn, D. and Kather, J.N. (2024) ‘Reporting guidelines in medical artificial intelligence: A systematic review and meta-analysis’, Communications Medicine (Lond), 4(1), p. 71. Available at: 10.1038/s43856-024-00492-0
  25. Lenharo, M. (2024) ‘The testing of AI in medicine is a mess. Here’s how it should be done’, Nature, 632, pp. 722724. Available at: 10.1038/d41586-024-02675-0
  26. Liu, X., Rivera, S.C., Moher, D., Calvert, M.J., Denniston, A.K., SPIRIT-AI and CONSORT-AI Working Group. (2020) ‘Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension’, BMJ, 370, p. m3164. Available at: 10.1136/bmj.m3164
  27. Luo, W., Phung, D., Tran, T., Gupta, S., Rana, S., Karmakar, C., Shilton, A., Yearwood, J., Dimitrova, N., Ho, T.B., Venkatesh, S. and Berk, M. (2016) ‘Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view’, Journal of Medical Internet Research, 18(12), e323. Available at: 10.2196/jmir.5870
  28. Matschinske, J., Alcaraz, N., Benis, A. et al. (2021) ‘The AIMe registry for artificial intelligence in biomedical research’, Nat Methods, 18, pp. 11281131. Available at: 10.1038/s41592-021-01241-0
  29. Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I.D. and Gebru, T. (2019) ‘Model Cards for Model Reporting’, Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ‘19). Association for Computing Machinery, New York, NY, USA, 220229. 10.1145/3287560.3287596
  30. Mongan, J., Moy, L. and Kahn, C.E. Jr. (2020) ‘Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A guide for authors and reviewers’, Radiology: Artificial Intelligence, 2(2), p. e200029. Available at: 10.1148/ryai.2020200029
  31. Nature Methods. (2021) ‘Keeping checks on machine learning’, Nature Methods, 18(10), p. 1119. Available at: 10.1038/s41592-021-01300-6
  32. Norgeot, B., Quer, G., Beaulieu-Jones, BK., Torkamani, A., Dias, R., Gianfrancesco, M., Arnaout, R., Kohane, I.S., Saria, S., Topol, E., Obermeyer, Z., Yu, B. and Butte, A.J. (2020) ‘Minimum information about clinical artificial intelligence modeling: The MI-CLAIM checklist’, Nature Medicine, 26(9), pp. 13201324. Available at: 10.1038/s41591-020-1041-y
  33. Palmblad, M., Böcker, S., Degroeve, S., Kohlbacher, O., Käll, L., Noble, W.S. and Wilhelm, M. (2022) ‘Interpretation of the DOME recommendations for machine learning in proteomics and metabolomics’, Journal of Proteome Research, 21(4), pp. 12041207. Available at: 10.1021/acs.jproteome.1c00900
  34. Pergl, R., Hooft, R., Suchánek, M., Knaisl, V. and Slifka, J. (2019) ‘Data Stewardship Wizard: A tool bringing together researchers, data stewards, and data experts around data management planning’, Data Science Journal, 18. Available at: 10.5334/dsj-2019-059
  35. Pineau, J., Vincent-Lamarre, P., Sinha, K., Lariviere, V., Beygelzimer, A., d’Alche-Buc, F., Fox, E. and Larochelle, H. (2022) ‘Improving reproducibility in machine learning research (a report from the neuriPS 2019 reproducibility program)’, Journal of Machine Learning Research, 22, pp. 74597478.
  36. Quilez, J., Vidal, E., Dily, F.L., Serra, F., Cuartero, Y., Stadhouders, R., Graf, T., Marti-Renom, M.A., Beato, M. and Filion, G. (2017) ‘Parallel sequencing lives, or what makes large sequencing projects successful’, GigaScience, 6(11), pp. 16. Available at: 10.1093/gigascience/gix100
  37. Rivera, S.C., Liu, X., Chan, A.W., Denniston, A.K., Calvert, M.J., SPIRIT-AI and CONSORT-AI Working Group. (2020) ‘Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension’, BMJ, 370, p. m3210. Available at: 10.1136/bmj.m3210
  38. Schmied, C., Nelson, M.S., Avilov, S., Bakker, G.J. et al. (2024) ‘Community-developed checklists for publishing images and image analyses’, Nature Methods, 21(2), pp. 170181. Available at: 10.1038/s41592-023-01987-9
  39. Sengupta, P.P., Shrestha, S., Berthon, B., Messas, E., Donal, E., Tison, G.H., Min, J.K., D’hooge, J., Voigt, J.U., Dudley, J., Verjans, J.W., Shameer, K., Johnson, K., Lovstakken, L., Tabassian, M., Piccirilli, M., Pernot, M., Yanamala, N., Duchateau, N., Kagiyama, N., Bernard, O., Slomka, P., Deo, R. and Arnaout, R. (2020) ‘Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A checklist: Reviewed by the American College of Cardiology Healthcare Innovation Council’, JACC: Cardiovascular Imaging, 13(9), pp. 20172035. Available at: 10.1016/j.jcmg.2020.07.015
  40. Vasey, B., Nagendran, M., Campbell, B., Clifton, D.A., Collins, G.S., Denaxas, S., Denniston, A.K., Faes, L., Geerts, B., Ibrahim, M., Liu, X., Mateen, B.A., Mathur, P., McCraddenm, M.D., Morgan, L., Ordish, J., Rogers, C., Saria, S., Ting, D.S.W., Watkinson, P., Weber, W., Wheatstone, P., McCulloch, P. and DECIDE-AI expert group. (2022) ‘Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI’, BMJ, 377, p. e070904. Available at: 10.1136/bmj-2022-070904
  41. Walsh, I., Fishman, D., Garcia-Gasulla, D. et al. (2021) ‘DOME: Recommendations for supervised machine learning validation in biology’, Nature Methods, 18, pp. 11221127. Available at: 10.1038/s41592-021-01205-4
  42. Wossnig, L., Furtmann, N., Buchanan, A., Kumar, S. and Greiff, V. (2024) ‘Best practices for machine learning in antibody discovery and development’, Drug Discovery Today, 29(7), p. 104025. Available at: 10.1016/j.drudis.2024.104025
Language: English
Submitted on: Jul 7, 2025
|
Accepted on: Dec 23, 2025
|
Published on: Jan 14, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Scott C. Edmunds, Nicole Nogoy, Qing Lan, Hongfang Zhang, Yannan Fan, Hongling Zhou, Chris Armit, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.