References
- Akhtar, M., Benjelloun, O., Conforti, C., Foschini, L. et al. (2024) ‘Croissant: A metadata format for ML-ready datasets’, Advances in Neural Information Processing Systems, 37, pp. 82133–82148. Available at: 10.52202/079017-2610
- Armit, C., Tuli, M.A. and Hunter, C.I. (2022) ‘A decade of GigaScience: GigaDB and the Open Data movement’, Gigascience, 11, p.
giac053 . Available at: 10.1093/gigascience/giac053 - Artrith, N., Butler, K.T., Coudert, F.X. et al. (2021) ‘Best practices in machine learning for chemistry’, Nature Chemistry, 13, pp. 505–508. Available at: 10.1038/s41557-021-00716-z
- Atkins, K., Garzón-Martínez, G.A., Lloyd, A., Doonan, J.H. and Lu, C. (2025) ‘Unlocking the power of AI for phenotyping fruit morphology in Arabidopsis’, Gigascience, 14, p.
giae123 . Available at: 10.1093/gigascience/giae123 - Attafi, O.A., Clementel, D., Kyritsis, K., Capriotti, E. et al. (2024) ‘DOME Registry: Implementing community-wide recommendations for reporting supervised machine learning in biology’, GigaScience, 13, p.
giae094 . Available at: 10.1093/gigascience/giae094 - Clark, T., Caufield, H., Parker, J.A., Al Manir, S. et al. (2024) ‘AI-readiness for biomedical data: Bridge2AI recommendations’, bioRxiv [Preprint], 2024.10.23.619844. Available at: 10.1101/2024.10.23.619844
- Collins, G.S., Moons, K.G.M., Dhiman, P., Riley, R.D. et al. (2024) ‘TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods’, BMJ, 385, p.
e078378 . Available at: 10.1136/bmj-2023-078378 - Collins, G.S., Reitsma, J.B., Altman, D.G. and Moons, K.G. (2015) ‘Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement’, BMJ, 350, p.
g7594 . Available at: 10.1136/bmj.g7594 - Data Citation Synthesis Group. (2014)
‘Joint Declaration of Data Citation Principles’ , in M. Martone (ed.) San Diego CA: FORCE11. 10.25490/a97f-egyk - Farrell, G., Adamidi, E., Buono, R.A., Anton, M. et al. (2025) ‘Open and sustainable AI: Challenges, opportunities and the road ahead in the life sciences’, arXiv,
2505.16619 . Available at: 10.48550/arXiv.2505.16619 - Gallifant, J., Afshar, M., Ameen, S., Aphinyanaphongs, Y., Chen, S., Cacciamani, G., Demner-Fushman, D., Dligach, D., Daneshjou, R., Fernandes, C., Hansen, L.H., Landman, A., Lehmann, L., McCoy, L.G., Miller, T., Moreno, A., Munch, N., Restrepo, D., Savova, G., Umeton, R., Gichoya, J.W., Collins, G.S., Moons, K.G.M., Celi, L.A. and Bitterman, D.S. (2025) ‘The TRIPOD-LLM reporting guideline for studies using large language models’, Nature Medicine, 31(1), pp. 60–69. Available at: 10.1038/s41591-024-03425-5
- González-Beltrán, A., Li, P., Zhao, J., Avila-Garcia, M.S. et al. (2015) ‘From peer-reviewed to peer-reproduced in scholarly publishing: The complementary roles of data models and workflows in bioinformatics’, PLoS One, 10(7), p.
e0127612 . Available at: 10.1371/journal.pone.0127612 - Guo, A., Chen, Z., Li, F. and Luo, Q. (2023) ‘Supporting data for “delineating Regions-of-Interest for mass spectrometry imaging by multimodally corroborated spatial segmentation”’, GigaScience Database. Available at: 10.5524/102374
- Guo, D., Yang, D., Zhang, H., Song, J. et al. (2025) ‘DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning’, Nature, 645(8081), pp. 633–638. Available at: 10.1038/s41586-025-09422-z
- Haller, S., Van Cauter, S., Federau, C., Hedderich, D.M. and Edjlali, M. (2022) ‘The R-AI-DIOLOGY checklist: A practical checklist for evaluation of artificial intelligence tools in clinical neuroradiology’, Neuroradiology, 64(5), pp. 851–864. Available at: 10.1007/s00234-021-02890-w
- Hatos, A., Quaglia, F., Piovesan, D. and Tosatto S.C.E. (2021) ‘APICURON: A database to credit and acknowledge the work of biocurators’, Database (Oxford), 2021, p.
baab019 . Available at: 10.1093/database/baab019 - Heil, B.J., Hoffman, M.M., Markowetz, F., Lee, S.I., Greene, C.S. and Hicks, S.C. (2021) ‘Reproducibility standards for machine learning in the life sciences’, Nature Methods, 18(10), pp. 1132–1135. Available at: 10.1038/s41592-021-01256-7
- Hernandez-Boussard, T., Bozkurt, S., Ioannidis, J.P.A. and Shah, N.H. (2020) ‘MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care’, Journal of the American Medical Informatics Association, 27(12), pp. 2011–2015. Available at: 10.1093/jamia/ocaa088
- Hugging Face. Dataset Cards.
https://huggingface.co/docs/hub/en/datasets-cards . - Hugging Face. Model Cards.
https://huggingface.co/docs/hub/en/model-cards . - Jones, D.T. (2019) ‘Setting the standards for machine learning in biology’, Nature Reviews Molecular Cell Biology, 20, pp. 659–660. Available at: 10.1038/s41580-019-0176-5
- Kakarmath, S., Esteva, A., Arnaout, R., Harvey, H., Kumar, S., Muse, E., Dong, F., Wedlund, L. and Kvedar, J. (2020) ‘Best practices for authors of healthcare-related artificial intelligence manuscripts’, NPJ Digital Medicine, 3(134). Available at: 10.1038/s41746-020-00336-w
- Kapoor, S., Cantrell, E.M., Peng, K., Pham, T.H., Bail, C.A., Gundersen, O.E., Hofman, J.M., Hullman, J., Lones, M.A., Malik, M.M., Nanayakkara, P., Poldrack, R.A., Raji, I.D., Roberts, M., Salganik, M.J., Serra-Garcia, M., Stewart, B.M., Vandewiele, G. and Narayanan, A. (2024) ‘REFORMS: Consensus-based recommendations for machine-learning-based science’, Science Advances, 10(18), p.
eadk3452 . Available at: 10.1126/sciadv.adk3452 - Kolbinger, F.R., Veldhuizen, G.P., Zhu, J., Truhn, D. and Kather, J.N. (2024) ‘Reporting guidelines in medical artificial intelligence: A systematic review and meta-analysis’, Communications Medicine (Lond), 4(1), p.
71 . Available at: 10.1038/s43856-024-00492-0 - Lenharo, M. (2024) ‘The testing of AI in medicine is a mess. Here’s how it should be done’, Nature, 632, pp. 722–724. Available at: 10.1038/d41586-024-02675-0
- Liu, X., Rivera, S.C., Moher, D., Calvert, M.J., Denniston, A.K., SPIRIT-AI and CONSORT-AI Working Group. (2020) ‘Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension’, BMJ, 370, p.
m3164 . Available at: 10.1136/bmj.m3164 - Luo, W., Phung, D., Tran, T., Gupta, S., Rana, S., Karmakar, C., Shilton, A., Yearwood, J., Dimitrova, N., Ho, T.B., Venkatesh, S. and Berk, M. (2016) ‘Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view’, Journal of Medical Internet Research, 18(12),
e323 . Available at: 10.2196/jmir.5870 - Matschinske, J., Alcaraz, N., Benis, A. et al. (2021) ‘The AIMe registry for artificial intelligence in biomedical research’, Nat Methods, 18, pp. 1128–1131. Available at: 10.1038/s41592-021-01241-0
- Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I.D. and Gebru, T. (2019) ‘Model Cards for Model Reporting’, Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ‘19).
Association for Computing Machinery , New York, NY, USA, 220–229. 10.1145/3287560.3287596 - Mongan, J., Moy, L. and Kahn, C.E.
Jr. (2020) ‘Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A guide for authors and reviewers’, Radiology: Artificial Intelligence, 2(2), p.e200029 . Available at: 10.1148/ryai.2020200029 - Nature Methods. (2021) ‘Keeping checks on machine learning’, Nature Methods, 18(10), p.
1119 . Available at: 10.1038/s41592-021-01300-6 - Norgeot, B., Quer, G., Beaulieu-Jones, BK., Torkamani, A., Dias, R., Gianfrancesco, M., Arnaout, R., Kohane, I.S., Saria, S., Topol, E., Obermeyer, Z., Yu, B. and Butte, A.J. (2020) ‘Minimum information about clinical artificial intelligence modeling: The MI-CLAIM checklist’, Nature Medicine, 26(9), pp. 1320–1324. Available at: 10.1038/s41591-020-1041-y
- Palmblad, M., Böcker, S., Degroeve, S., Kohlbacher, O., Käll, L., Noble, W.S. and Wilhelm, M. (2022) ‘Interpretation of the DOME recommendations for machine learning in proteomics and metabolomics’, Journal of Proteome Research, 21(4), pp. 1204–1207. Available at: 10.1021/acs.jproteome.1c00900
- Pergl, R., Hooft, R., Suchánek, M., Knaisl, V. and Slifka, J. (2019) ‘Data Stewardship Wizard: A tool bringing together researchers, data stewards, and data experts around data management planning’, Data Science Journal, 18. Available at: 10.5334/dsj-2019-059
- Pineau, J., Vincent-Lamarre, P., Sinha, K., Lariviere, V., Beygelzimer, A., d’Alche-Buc, F., Fox, E. and Larochelle, H. (2022) ‘Improving reproducibility in machine learning research (a report from the neuriPS 2019 reproducibility program)’, Journal of Machine Learning Research, 22, pp. 7459–7478.
- Quilez, J., Vidal, E., Dily, F.L., Serra, F., Cuartero, Y., Stadhouders, R., Graf, T., Marti-Renom, M.A., Beato, M. and Filion, G. (2017) ‘Parallel sequencing lives, or what makes large sequencing projects successful’, GigaScience, 6(11), pp. 1–6. Available at: 10.1093/gigascience/gix100
- Rivera, S.C., Liu, X., Chan, A.W., Denniston, A.K., Calvert, M.J., SPIRIT-AI and CONSORT-AI Working Group. (2020) ‘Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension’, BMJ, 370, p.
m3210 . Available at: 10.1136/bmj.m3210 - Schmied, C., Nelson, M.S., Avilov, S., Bakker, G.J. et al. (2024) ‘Community-developed checklists for publishing images and image analyses’, Nature Methods, 21(2), pp. 170–181. Available at: 10.1038/s41592-023-01987-9
- Sengupta, P.P., Shrestha, S., Berthon, B., Messas, E., Donal, E., Tison, G.H., Min, J.K., D’hooge, J., Voigt, J.U., Dudley, J., Verjans, J.W., Shameer, K., Johnson, K., Lovstakken, L., Tabassian, M., Piccirilli, M., Pernot, M., Yanamala, N., Duchateau, N., Kagiyama, N., Bernard, O., Slomka, P., Deo, R. and Arnaout, R. (2020) ‘Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A checklist: Reviewed by the American College of Cardiology Healthcare Innovation Council’, JACC: Cardiovascular Imaging, 13(9), pp. 2017–2035. Available at: 10.1016/j.jcmg.2020.07.015
- Vasey, B., Nagendran, M., Campbell, B., Clifton, D.A., Collins, G.S., Denaxas, S., Denniston, A.K., Faes, L., Geerts, B., Ibrahim, M., Liu, X., Mateen, B.A., Mathur, P., McCraddenm, M.D., Morgan, L., Ordish, J., Rogers, C., Saria, S., Ting, D.S.W., Watkinson, P., Weber, W., Wheatstone, P., McCulloch, P. and DECIDE-AI expert group. (2022) ‘Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI’, BMJ, 377, p.
e070904 . Available at: 10.1136/bmj-2022-070904 - Walsh, I., Fishman, D., Garcia-Gasulla, D. et al. (2021) ‘DOME: Recommendations for supervised machine learning validation in biology’, Nature Methods, 18, pp. 1122–1127. Available at: 10.1038/s41592-021-01205-4
- Wossnig, L., Furtmann, N., Buchanan, A., Kumar, S. and Greiff, V. (2024) ‘Best practices for machine learning in antibody discovery and development’, Drug Discovery Today, 29(7), p.
104025 . Available at: 10.1016/j.drudis.2024.104025
