References
- Amini, S. et al. (2023) ‘Zero-shot ontology alignment with large language models’, in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 8974–8989.
- Borgo, S. et al. (2023) ‘DOLCE: A descriptive ontology for linguistic and cognitive engineering’, Applied Ontology, 17(1), pp. 45–69. Available at: 10.3233/AO-210259
- Chen, J. et al. (2021) ‘OWL2Vec*: Embedding of OWL ontologies’, Machine Learning, 110(8), pp. 1813–1845. Available at: 10.1007/s10994-021-05997-6
- Choi, N., Song, I.-Y. and Han, H. (2006) ‘A survey on ontology mapping’, ACM SIGMOD Record, 35(3), pp. 34–41. Available at: 10.1145/1168092.1168097
DOLCE overview (official): Laboratory for applied ontology (ISTC-CNR) . DOLCE: Overview. Available at:loa.istc.cnr.it (Accessed: 08 August 2025).- DOLCE-Lite (OWL): DOLCE-Lite OWL (ontology file). Available at:
https://www.loa.istc.cnr.it/ontologies/DOLCE-Lite.owl (Accessed: 08 August 2025). - El Yamami, A. et al. (2019) ‘An ontological representation of ITIL framework service level management process’, in Proceedings of the 3rd International Conference on Signals, Distributed Systems and Artificial Intelligence (SDSAI 2018).
Springer . Available at: 10.1007/978-3-030-11914-0_9 - Euzenat, J. and Shvaiko, P. (2013) Ontology matching, 2nd ed. Springer. Available at: 10.1007/978-3-642-38721-0
- Faria, D. et al. (2013) ‘The AgreementMakerLight ontology matching system’, in Proceedings of the OTM 2013 Workshops, LNCS 8185, pp. 527–541. Available at: 10.1007/978-3-642-41030-7_38
- Fernandez-Lopez, M. and Gomez-Porez, A. (2002) ‘Overview and analysis of methodologies for building ontologies’, The Knowledge Engineering Review, 17(2), pp. 129–156. Available at: 10.1017/S0269888902000462
- Glimm, B. et al. (2014) ‘HermiT: An OWL 2 Reasoner’, Journal of Automated Reasoning, 53(3), pp. 245–269. Available at: 10.1007/s10817-014-9305-1
- Guarino, N. and Welty, C.A. (2009)
‘An overview of OntoClean’ , in S. Staab and R. Studer (eds.) Handbook on Ontologies. Springer, pp. 151–171. Available at: 10.1007/978-3-540-92673-3_9 - Hamilton, W.L., Ying, R. and Leskovec, J. (2017) ‘Inductive representation learning on large graphs’, in Advances in Neural Information Processing Systems 30 (NeurIPS 2017), pp. 1024–1034.
- He, P. et al. (2021) ‘DeBERTa: Decoding-enhanced BERT with disentangled attention’, in International Conference on Learning Representations (ICLR 2021).
- He, Y. et al. (2022) ‘BERTMap: A BERT-based ontology alignment system’, Proceedings of the AAAI Conference on Artificial Intelligence, 36(5), pp. 5684–5691. Available at: 10.1609/aaai.v36i5.20510
- He, Y. et al. (2023) ‘Exploring large language models for ontology alignment’, in Proceedings of the ISWC 2023
(Posters & Demos Track), CEUR Workshop Proc . vol. 3632. - ITSMO: IT Service Management Ontology (ITSMO). Canonical resolver. Available at:
https://w3id.org/itsmo ; catalog entry in LOV: “IT Service Management Ontology (itsmo)”. (Accessed: 08 August 2025). ontology.it; lov.linkeddata.es. - Jimenez-Ruiz, E. and Cuenca Grau, B. (2011) ‘LogMap: Logic-based and scalable ontology matching’, in Proceedings of the 10th International Semantic Web Conference (ISWC 2011), LNCS 7031, pp. 273–288. Available at: 10.1007/978-3-642-25073-6_18
- Jimenez-Ruiz, E. et al. (2022) ‘Ontology alignment evaluation initiative: Six years of experience’, Journal of Data Semantics, 11(3), pp. 191–207.
- Karadeniz, I. and Ozgur, A. (2019) ‘Linking entities through an ontology using word embeddings and syntactic re-ranking’, BMC Bioinformatics, 20, p.
156 . Available at: 10.1186/s12859-019-2678-8 - Lewis, P. et al. (2020) ‘Retrieval-augmented generation for knowledge-intensive NLP tasks’, Advances in Neural Information Processing Systems, 33, pp. 9459–9474.
- Li, J. et al. (2023) ‘On the initialization of graph neural networks’, in Proceedings of the 40th International Conference on Machine Learning (ICML 2023), PMLR 202, pp. 19911–19931.
- Noy, N.F. and McGuinness, D.L. (2001) Ontology development 101: A guide to creating your first ontology. Stanford University.
- Noy, N.F. and Musen, M.A. (2001) ‘Anchor-PROMPT: Using non-local context for semantic matching’, in Proceedings of the IJCAI-2001 Workshop on Ontologies and Information Sharing.
- OpenAI. GPT-4o mini model documentation. Available at:
https://platform.openai.com/docs/models/gpt-4o-mini (Accessed 08 August 2024). - Pastuszak, J., Czarnecki, A. and Orlowski, C. (2012) ‘Ontologically aided rule model for the implementation of ITIL processes’, Frontiers in Artificial Intelligence and Applications, 243, pp. 1428–1438.
- Qiang, Z., Wang, W. and Taylor, K. (2024) ‘Agent-OM: Leveraging LLM agents for ontology matching’, Proceedings of the VLDB Endowment, 18(3), pp. 516–529. Available at: 10.14778/3712221.3712222
- Ristoski, P. and Paulheim, H. (2016) ‘RDF2Vec: RDF graph embeddings for data mining’, in Proceedings of the 15th International Semantic Web Conference (ISWC 2016), LNCS 9981, pp. 498–514. Available at: 10.1007/978-3-319-46523-4_30
- Sirin, E. et al. (2007) ‘Pellet: A practical OWL-DL reasoner’, Journal of Web Semantics, 5(2), pp. 51–53. Available at: 10.1016/j.websem.2007.03.004
- Smith, B. (2008)
‘Ontology (science)’ , in Formal Ontology in Information Systems (FOIS 2008). IOS Press, pp. 21–35. - Thieblin, E., Haemmerle, O. and Trojahn, C. (2021) ‘Automatic evaluation of complex alignments: An instance-based approach’, Semantic Web, 12(5), pp. 767–787. Available at: 10.3233/SW-210437
