References
- Algorithmia (2020). 2020 state of enterprise machine learning. Report. Retrieved August 2023 from
https://www.coriniumintelligence.com/2020-state-of-enterprise-machine-learning-algorithmia-whitepaper-download . - Amershi, S. et al. (2019). ‘Software Engineering for Machine Learning: A Case Study’, in: IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300. Available at: 10.1109/ICSE-SEIP.2019.00042
- Bortz, M. et al. (2023). ‘AI in Process Industries – Current Status and Future Prospects’, Chemie Ingenieur Technik, 95(7), pp. 975–988. Available at: 10.1002/cite.202200247
- Dataverse (2023). Available at:
https://dataverse.org/ . - Dataverse Manual (2023). Available at:
https://guides.dataverse.org/en/latest/admin/index.html . - Faubel, L., Schmid, K. and Eichelberger, H. (2022). ‘Is MLOps different in Industry 4.0? General and Specific Challenges’, in: Proceedings of the 3rd International Conference on Innovative Intelligent Industrial Production and Logistics – IN4PL1.
INSTICC. SciTePress , pp. 161–167. ISBN: 978–989-758-612–5. Available at: 10.5220/0011589600003329 - Fowler, M. and Beck, K. (1999). Refactoring improving the design of existing code. USA. Safari Tech Books Online
- Granlund, T., Stirbu, V. and Mikkonen, T. (2021). ‘Towards Regulatory-Compliant MLOps: Oravizio’s Journey from a Machine Learning Experiment to a Deployed Certified Medical Product’. Available at: 10.1007/s42979-021-00726-1
- ISO-22989 (2022). Information technology — Artificial intelligence — Artificial intelligence concepts and terminology. Standard. International Organization for Standardization.
- ISO-23053 (2022). Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML). Standard. International Organization for Standardization.
- ISO-23894 (2022). Information technology — Artificial intelligence — Guidance on risk management. Standard. International Organization for Standardization.
- ISO-24027 (2021). Information technology — Artificial intelligence (AI) — Bias in AI systems and AI aided decision making. Standard. International Organization for Standardization.
- ISO-24368 (2022). Information technology — Artificial intelligence — Overview of ethical and societal concerns. Standard. International Organization for Standardization.
- ISO-4213 (2022). Information technology — Artificial intelligence — Assessment of machine learning classification performance. Standard. International Organization for Standardization.
- Janardhanan, P.S. (2020). ‘Project repositories for machine learning with TensorFlow’, in: Procedia Computer Science, 171. Third International Conference on Computing and Network Communications (CoCoNet’19), pp. 188–196. ISSN: 1877-0509. Available at: 10.1016/j.procs.2020.04.020
- Katz, D.S., Psomopoulos F.E. and Castro, L.J. (2021). ‘Working Towards Understanding the Role of FAIR for Machine Learning’, in: Workshop on Data and Research Objects Management for Linked Open Science. Available at:
https://api.semanticscholar.org/CorpusID:242926042 . - KEEN Project (2024). Available at:
https://keen-plattform.de/ . - Khattak, F. et al. (Mar. 2023). ‘MLHOps: Machine Learning for Healthcare Operations.’ Available at: 10.48550/arXiv.2305.02474
- Khaydarov, V., Becker, M.P. and Urbas, L. (2023). ‘Image-Based Flow Regime Recognition in Aerated Stirred Tanks Using Deep Transfer Learning’, in: Chemie Ingenieur Technik, cite.202200246. ISSN: 0009–286X, 1522–2640. Available at: 10.1002/cite.202200246 (visited on 05/15/2023).
- Kröger, C., Khaydarov, V. and Urbas, L. (2022).
‘Data-driven, Image-based Flow Regime Classification for Stirred Aerated Tanks’ , in: Computer Aided Chemical Engineering. Vol. 51. Elsevier, pp. 1363–1368. ISBN: 978-0-323-95879-0. Available at: 10.1016/B978-0-323-95879-0.50228-9 (visited on 11/08/2022). - Mcdougal, R. et al. (2017). ‘Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience’, Journal of Computational Neuroscience, 42. Available at: 10.1007/s10827-016-0623-7
- Mlflow (2023). Available at:
https://mlflow.org/ . - Mlflow Documentation (2023). Available at:
https://www.mlflow.org/docs/2.15.0/introduction/index.html . - ModelDB (2023). Available at:
https://modeldb.science/ . - Mozgova, I. et al. (2020). ‘Research Data Management System for a large Collaborative Project’, In: NordDesign. Available at: 10.35199/NORDDESIGN2020.48
- NNEF (2023). Available at:
https://www.khronos.org/nnef . - ONNX Standard (2023). Available at:
https://onnx.ai/ . - Porter, C. (2005). ‘Developing a successful metadata schema’, Journal of Digital Asset Management. Available at: 10.1057/palgrave.dam.3640042
- Ravi, N. et al. (2022). ‘FAIR principles for AI models with a practical application for accelerated high energy diffraction microscopy’, Scientific Data, 9. Available at: 10.1038/s41597-022-01712-9
- Rijn, J. et al. (2013). ‘OpenML: A Collaborative Science Platform’, vol. 8190, pp. 645–649. ISBN: 978-3-642-38708-1. Available at: 10.1007/978-3-642-40994-3_46
- Ruf, P. et al. (2021). ‘Demystifying MLOps and Presenting a Recipe for the Selection of Open-Source Tools’, Applied Sciences, 11(19). ISSN: 2076–3417. Available at: 10.3390/app11198861
- Schlegel, M. and Sattler, K. (2023). ‘Management of Machine Learning Lifecycle Artifacts: A Survey’, SIGMOD Rec. 51(4), pp. 18–35. ISSN: 0163–5808. Available at: 10.1145/3582302.3582306
- Sculley, D. et al. (2015).
‘Hidden Technical Debt in Machine Learning Systems’ , Advances in Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc. Available at:https://proceedings.neurips.cc/paper_files/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf . - Sherpa, L. et al. (2023). ‘ProMetaS – A Metadata Schema for Process Engineering and Industry’, Chemie Ingenieur Technik, 95(7), pp. 1041–1048. Available at: 10.1002/cite.202200225
- Shuja, J. et al. (2021). ‘Applying machine learning techniques for caching in next-generation edge networks: A comprehensive survey’, Journal of Network and Computer Applications, 181, p.
103005 . ISSN: 1084–8045. Available at: 10.1016/j.jnca.2021.103005 - Spjuth, O., Frid, J. and Hellander, A. (2021). ‘The machine learning life cycle and the cloud: implications for drug discovery’, Expert Opinion on Drug Discovery, 16, pp. 1–9. Available at: 10.1080/17460441.2021.1932812
- Tyson, G. et al. (1995). ‘A modified approach to data cache management’, In: Proceedings of the 28th Annual International Symposium on Microarchitecture, pp. 93–103. Available at: 10.1109/MICRO.1995.476816
- Wang, W.M., Göpfert, T. and Stark, R. (2016). ‘Data Management in Collaborative Interdisciplinary Research Projects—Conclusions from the Digitalization of Research in Sustainable Manufacturing’, ISPRS International Journal of Geo-Information, 5(4). ISSN: 2220–9964. Available at: 10.3390/ijgi5040041
- Wilkinson, M.D. et al. (2016). ‘The FAIR Guiding Principles for scientific data management and stewardship’, Scientific Data, 3(1), p.
160018 . ISSN: 2052–4463. Available at: 10.1038/sdata.2016.18 - Zhao, S. et al. (2018). ‘Packaging and Sharing Machine Learning Models via the Acumos AI Open Platform’, In: CoRR abs/1810.07159. arXiv: 1810.07159. Available at:
http://arxiv.org/abs/1810.07159 .
