References
- 1Ammar, W. et al. (2018) ‘Construction of the Literature graph in semantic scholar’, in S. Bangalore, J. Chu-Carroll, and Y. Li (eds) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers). New Orleans – Louisiana:
Association for Computational Linguistics , pp. 84–91. Available at: 10.18653/v1/N18-3011 - 2Ampatzoglou, A. et al. (2020)
‘Guidelines for Managing Threats to Validity of Secondary Studies in Software Engineering’ , in M. Felderer and G.H. Travassos (eds.) Contemporary Empirical Methods in Software Engineering. Cham: Springer International Publishing, pp. 415–441. Available at: 10.1007/978-3-030-32489-6_15 - 3Anteghini, M. et al. (2020)
‘Representing Semantified Biological Assays in the Open Research Knowledge Graph’ , in E. Ishita, N.L.S. Pang, and L. Zhou (eds.) Digital Libraries at Times of Massive Societal Transition. Cham: Springer International Publishing, pp. 89–98. Available at: 10.1007/978-3-030-64452-9_8 - 4Arndt, S. et al. (2023)
‘Metadata4Ing: An ontology for describing the generation of research data within a scientific activity’ . Zenodo. Available at: 10.5281/zenodo.8382665 - 5Aryani, A. and Wang, J. (2017) ‘Research Graph: Building a Distributed Graph of Scholarly Works using Research Data Switchboard’, in Open Repositories Conference. Available at: 10.4225/03/58c696655af8a
- 6Auer, S. et al. (2007)
‘DBpedia: A Nucleus for a Web of Open Data’ , in K. Aberer et al. (eds.) The Semantic Web. Berlin, Heidelberg: Springer, pp. 722–735. Available at: 10.1007/978-3-540-76298-0_52 - 7Auer, S. et al. (2018) ‘Towards a Knowledge Graph for Science’, in Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics (WIMS ’18). New York, NY, USA:
Association for Computing Machinery , pp. 1–6. Available at: 10.1145/3227609.3227689 - 8Auer, S. et al. (2020) ‘Improving Access to Scientific Literature with Knowledge Graphs’, Bibliothek Forschung und Praxis, 44(3), pp. 516–529. Available at: 10.1515/bfp-2020-2042
- 9Auer, S. et al. (2023a) ‘The sciqa scientific question answering benchmark for scholarly knowledge’, Scientific Reports, 13(1), p.
7240 . Available at: 10.1038/s41598-023-33607-z - 10Auer, S. et al. (2023b) ‘Organizing Scholarly Knowledge in the Open Research Knowledge Graph: An Open-Science Platform for FAIR Scholarly Knowledge’, Proceedings of the Conference on Research Data Infrastructure,
1 . Available at: 10.52825/cordi.v1i.272 - 11Basili, V.R., Caldiera, C. and Rombach, H.D. (1994) ‘Goal Question Metric Paradigm’, Encyclopedia of Software Engineering,
1 , pp. 528–532. Available at: 10.1002/0471028959.sof142 - 12Behrens, B.A. et al. (2019) Manufacturing and Evaluation of Multi-Material Axial-Bearing Washers by Tailored Forming’, Metals, 9(2). Available at: 10.3390/met9020232
- 13Bless, C., Baimuratov, I. and Karras, O. (2022) ‘SciKGTeX – Scientific Knowledge Graph TeX’. Available at:
https://github.com/Christof93/SciKGTeX - 14Bless, C., Baimuratov, I. and Karras, O. (2023) ‘SciKGTeX - A LATEX Package to Semantically Annotate Contributions in Scientific Publications’, in 2023 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 155–164. Available at: 10.1109/JCDL57899.2023.00030
- 15Brack, A. et al. (2022) ‘Analysing the Requirements for an Open Research Knowledge Graph: Use Cases, Quality Requirements, and Construction Strategies’, International Journal on Digital Libraries, 23(1), pp. 33–55. Available at: 10.1007/s00799-021-00306-x
- 16Brockmöller, T. et al. (2020) ‘Computer-Aided Engineering Environment for Designing Tailored Forming Components’, Metals, 10(12). Available at: 10.3390/met10121589
- 17Budde, L. et al. (2022) ‘Investigation of the Material Combination 20MnCr5 and X45CrSi9-3 in the Tailored Forming of Shafts with Bearing Seats’, Production Engineering, 16(5), pp. 661–671. Available at: 10.1007/s11740-022-01119-w
- 18Burton, A. et al. (2017) ‘The Scholix Framework for Interoperability in Data-Literature Information Exchange’, D-Lib Magazine, 23(1/2). Available at: 10.1045/january2017-burton
- 19Coors, T. et al. (2020) ‘Investigations on Tailored Forming of AISI 52100 as Rolling Bearing Raceway’, Metals, 10(10), p.
1363 . Available at: 10.3390/met10101363 - 20COVID-19 Air Quality Data Collection (2021) ‘COVID-19 Air Quality Data Collection’. Available at:
https://covid-aqs.fz-juelich.de (Accessed: 21 January 2024). - 21Darari, F. et al. (2018) ‘Completeness Management for RDF Data Sources’, ACM Trans. Web, 12(3). Available at: 10.1145/3196248
- 22Dessí, D. et al. (2022) ‘CS-KG: A Large-Scale Knowledge Graph of Research Entities and Claims in Computer Science’, in The Semantic Web – ISWC 2022: 21st International Semantic Web Conference, Virtual Event, October 23–27, 2022, Proceedings. Berlin, Heidelberg:
Springer-Verlag , pp. 678–696. Available at: 10.1007/978-3-031-19433-7_39 - 23Domingo-Fernández, D. et al. (2020) ‘COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology’, Bioinformatics, 37(9), pp. 1332–1334 . Available at: 10.1093/bioinformatics/btaa834
- 24D’Souza, J. et al. (2024) ‘Quality Assessment of Research Comparisons in the Open Research Knowledge Graph: A Case Study’, JLIS.it, 15(1), pp. 126–143. Available at: 10.36253/jlis.it-547
- 25Färber, M. (2019) ‘The Microsoft Academic Knowledge Graph: A Linked Data Source with 8 Billion Triples of Scholarly Data’, in The Semantic Web - ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand,
October 26–30, 2019 , Proceedings, Part II 18.Springer , pp. 113–129. Available at: 10.1007/978-3-030-30796-7_8 - 26Gkatzelis, G.I. et al. (2021) ‘The Global Impacts of COVID-19 Lockdowns on Urban Air Pollution: A Critical Review and Recommendations’, Elementa: Science of the Anthropocene, 9(1), p.
00176 . Available at: 10.1525/elementa.2021.00176 - 27Glinz, M. and Fricker, S.A. (2015) ‘On Shared Understanding in Software Engineering: An Essay’, Computer Science – Research and Development, 30, pp. 363–376. Available at: 10.1007/s00450-014-0256-x
- 28Goedicke, M. et al. (2024) ‘National Research Data Infrastructure for and with Computer Science (NFDIxCS)’. Zenodo. Available at: 10.5281/zenodo.10557968
- 29Grüninger, M. and Fox, M.S. (1995)
‘The Role of Competency Questions in Enterprise Engineering’ , in A. Rolstadås (ed.) Benchmarking — Theory and Practice. Boston, MA: Springer US, pp. 22–31. Available at: 10.1007/978-0-387-34847-6_3 - 30Hammond, T., Pasin, M. and Theodoridis, E. (2017) ‘Data Integration and Disintegration: Managing Springer Nature SciGraph with SHACL and OWL’, in International Workshop on the Semantic Web. Available at:
https://ceur-ws.org/Vol-1963/paper493.pdf - 31Hogan, A. et al. (2021) Knowledge Graphs. Springer (Synthesis Lectures on Data, Semantics, and Knowledge). Available at: 10.2200/S01125ED1V01Y202109DSK022
- 32Hussein, H. et al. (2022)
‘KGMM – A Maturity Model for Scholarly Knowledge Graphs Based on Intertwined Human-Machine Collaboration’ , in Y.-H. Tseng, M. Katsurai, and H.N. Nguyen (eds.) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries. Cham: Springer International Publishing, pp. 253–269. Available at: 10.1007/978-3-031-21756-2_21 - 33Hussein, H. et al. (2023)
‘Increasing Reproducibility in Science by Interlinking Semantic Artifact Descriptions in a Knowledge Graph’ , in D.H. Goh, S.-J. Chen, and S. Tuarob (eds.) Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine Collaboration. Singapore: Springer Nature Singapore, pp. 220–229. Available at: 10.1007/978-981-99-8088-8_19 - 34Jaradeh, M.Y. et al. (2019) ‘Open Research Knowledge Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge’, in Proceedings of the 10th International Conference on Knowledge Capture. New York, NY, USA:
Association for Computing Machinery (K-CAP ’19) , pp. 243–246. Available at: 10.1145/3360901.3364435 - 35Jaradeh, M.Y., Stocker, M. and Auer, S. (2020)
‘Question Answering on Scholarly Knowledge Graphs’ , in M. Hall et al. (eds.) Digital Libraries for Open Knowledge. Cham: Springer International Publishing, pp. 19–32. Available at: 10.1007/978-3-030-54956-5_2 - 36Jeschke, J.M. et al. (2020) Hi-Knowledge.org. Available at:
https://hi-knowledge.org/ (Accessed: 21 January 2024). - 37Kapogiannis, G. and Sherratt, F. (2018) ‘Impact of Integrated Collaborative Technologies to Form a Collaborative Culture in Construction Projects’, Built Environment Project and Asset Management, 8(1), pp. 24–38. Available at: 10.1108/BEPAM-07-2017-0043
- 38Karras, O. (2024)
‘Analysis of Tailored Forming Process Chains in Mechanical Process Engineering’ . Zenodo. Available at: 10.5281/zenodo.13752753 - 39Karras, O. et al. (2021) ‘Researcher or Crowd Member? Why not both! The Open Research Knowledge Graph for Applying and Communicating CrowdRE Research’, in 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). Los Alamitos, CA, USA:
IEEE Computer Society , pp. 320–327. Available at: 10.1109/REW53955.2021.00056 - 40Karras, O. et al. (2023b) ‘“FAIR-by-Design” Artifacts: Enriching Publications and Software with FAIR Scientific Information at the Time of Creation’, in Proceedings of the NFDI4Ing Conference 2023 – Innovation in Research Data Management: Bridging the Gaps Between Disciplines and Opening New Perspectives for Research in Engineering Science. NFDI4Ing, pp. 34–35. Available at: 10.5281/zenodo.10036957
- 41Karras, O. et al. (2023c) ‘Divide and Conquer the EmpiRE: A Community-Maintainable Knowledge Graph of Empirical Research in Requirements Engineering’, in 2023 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). Los Alamitos, CA, USA:
IEEE Computer Society , pp. 1–12. Available at: 10.1109/ESEM56168.2023.10304795 - 42Karras, O. et al. (2024) ‘Organizing Scientific Knowledge From Energy System Research Using the Open Research Knowledge Graph’, arXiv preprint arXiv:2401. 13365 [Preprint]. Available at: 10.48550/arXiv.2401.13365
- 43Karras, O., Budde, L. and Merkel, P. (2023a) ‘Tailored Forming Process Chain for the Manufacturing of Hybrid Components with Bearing Raceways Using Different Material Combinations’. Open Research Knowledge Graph. Available at: 10.48366/R187049
- 44Karras, O. and Groen, E.C. (2021) ‘Overview of Approaches that Classify User Feedback as Feature Request’. Open Research Knowledge Graph. Available at: 10.48366/R112387
- 45Karras, O. and Khan, J.A. (2021) ‘Overview of Crowd Intelligence in Requirements Engineering’, Open Research Knowledge Graph. Available at: 10.48366/R114155
- 46Karras, O., Schneider, K. and Fricker, S.A. (2020) ‘Representing Software Project Vision by Means of Video: A Quality Model for Vision Videos’, Journal of Systems and Software,
162 , p.110479 . Available at: 10.1016/j.jss.2019.110479 - 47Keet, C.M. (2013)
‘Open World Assumption’ , in W. Dubitzky et al. (eds.) Encyclopedia of Systems Biology. New York, NY: Springer New York, pp. 1567–1567. Available at: 10.1007/978-1-4419-9863-7_734 - 48Kejriwal, M. (2022) ‘Knowledge Graphs: A Practical Review of the Research Landscape’, Information, 13(4). Available at: 10.3390/info13040161
- 49Khan, J.A. et al. (2019)
‘Crowd Intelligence in Requirements Engineering: Current Status and Future Directions’ , in E. Knauss and M. Goedicke (eds.) Requirements Engineering: Foundation for Software Quality. Cham: Springer International Publishing, pp. 245–261. Available at: 10.1007/978-3-030-15538-4_18 - 50Kitchenham, B.A. and Pfleeger, S.L. (2008)
‘Personal Opinion Surveys’ , in F. Shull, J. Singer, and D.I.K. Sjøberg (eds.) Guide to Advanced Empirical Software Engineering. London: Springer London, pp. 63–92. Available at: 10.1007/978-1-84800-044-5_3 - 51Knoll, C. (2022) ‘Examining the ORKG towards Representation of Control Theoretic Knowledge – Preliminary Experiences and Conclusions’, in Companion Proceedings of the Web Conference 2022. New York, NY, USA:
Association for Computing Machinery (WWW ’22) , pp. 810–817. Available at: 10.1145/3487553.3524661 - 52Knublauch, H. and Kontokostas, D. (2017)
Shapes Constraint Language (SHACL) . W3C. Available at:https://www.w3.org/TR/2017/REC-shacl-20170720/ - 53Kruse, J. et al. (2019) ‘Cross-wedge rolling of PTA-welded hybrid steel billets with rolling bearing steel and hard material coatings’, AIP Conference Proceedings, 2113(1), p.
040019 . Available at: 10.1063/1.5112553 - 54Kullmann, F. et al. (2021) ‘Comparison of Studies on Germany’s Energy Supply in 2050’. Open Research Knowledge Graph. Available at: 10.48366/r153801
- 55Manghi, P. et al. (2019) ‘The OpenAIRE Research Graph Data Model’. Zenodo. Available at: 10.5281/zenodo.2643199
- 56Martin, L. and Henrich, A. (2022)
‘RDFtex: Knowledge Exchange Between LaTeX-Based Research Publications and Scientific Knowledge Graphs’ , in G. Silvello et al. (eds.) Linking Theory and Practice of Digital Libraries. Cham: Springer International Publishing, pp. 26–38. Available at: 10.1007/978-3-031-16802-4_3 - 57Mozgova, I. et al. (2022) ‘Knowledge Annotation within Research Data Management System for Oxygen-Free Production Technologies’, Proceedings of the Design Society, 2, pp. 525–532. Available at: 10.1017/pds.2022.54
- 58Nieße, A. et al. (2022) ‘NFDI4Energy – National Research Data Infrastructure for the Interdisciplinary Energy System Research’. Zenodo. Available at: 10.5281/zenodo.6772013
- 59Oelen, A. et al. (2020) ‘COVID-19 Reproductive Number Estimates’. Open Research Knowledge Graph. Available at: 10.48366/R44930
- 60Pape, F. et al. (2018) ‘Tribological Study on Tailored-Formed Axial Bearing Washers’, Tribology Online, 13(6), pp. 320–326. Available at: 10.2474/trol.13.320
- 61Papers With Code (2020) Papers With Code. Available at:
https://paperswithcode.com/about (Accessed: 21 January 2024). - 62Papke, T. et al. (2018) Bulk Metal Forming of Additively Manufactured Elements’, in F. Vollertsen et al. (eds.) MATEC Web of Conferences, 190, p.
03002 . Available at: 10.1051/matecconf/201819003002 - 63Papke, T. et al. (2023) ‘Alternating Additive Manufacturing and Forming—An Innovative Manufacturing Approach’, Journal of Manufacturing and Materials Processing, 7(3), p. 90. Available at: 10.3390/jmmp7030090
- 64Penev, L. et al. (2019) ‘OpenBiodiv: A Knowledge Graph for Literature-Extracted Linked Open Data in Biodiversity Science’, Publications, 7(2), p.
38 . Available at: 10.3390/publications7020038 - 65Prakash, A. and Sandfeld, S. (2018) ‘Chances and Challenges in Fusing Data Science with Materials Science’, Practical Metallography, 55(8), pp. 493–514. Available at: 10.3139/147.110539
- 66Priem, J., Piwowar, H. and Orr, R. (2022) ‘OpenAlex: A Fully-Open Index of Scholarly Works, Authors, Venues, Institutions, and Concepts’, arXiv preprint [Preprint]. Available at: 10.48550/arXiv.2205.01833
- 67Robson, C. and McCartan, K. (2016)
Real World Research . John Wiley & Sons. - 68Rossenova, L. et al. (2023) ‘KGI4NFDI: Knowledge graph infrastructure for the German national research data infrastructure’. Zenodo. Available at: 10.5281/zenodo.8337432
- 69Runeson, P., Engström, E. and Storey, M.-A. (2020)
‘The Design Science Paradigm as a Frame for Empirical Software Engineering’ , in M. Felderer and G.H. Travassos (eds.) Contemporary Empirical Methods in Software Engineering. Cham: Springer International Publishing, pp. 127–147. Available at: 10.1007/978-3-030-32489-6_5 - 70Runnwerth, M., Stocker, M. and Auer, S. (2020)
‘Operational Research Literature as a Use Case for the Open Research Knowledge Graph’ , in A.M. Bigatti et al. (eds.) Mathematical Software—ICMS 2020. Cham: Springer International Publishing, pp. 327–334. Available at: 10.1007/978-3-030-52200-1_32 - 71Santos, R., Groen, E.C. and Villela, K. (2019) ‘An Overview of User Feedback Classification Approaches’, in REFSQ Workshops, pp. 357–369. Available at:
https://ceur-ws.org/Vol-2376/NLP4RE19_paper11.pdf - 72Schimmler, S. (2023) ‘NFDI4DataScience: National Research Data Infrastructure for Data Science and AI’. Available at:
https://www.dfg.de/resource/blob/174308/e173d5d18c9e740d2b1e830280ad3b30/nfdi4datascience-abstract-data.pdf - 73Schindler, D. et al. (2021) ‘SoMeSci - A 5 Star Open Data Gold Standard Knowledge Graph of Software Mentions in Scientific Articles’, in 30th ACM International Conference on Information & Knowledge Management. New York, NY, USA:
Association for Computing Machinery (CIKM ’21) , pp. 4574–4583. Available at: 10.1145/3459637.3482017 - 74Schindler, D. et al. (2022) ‘The Role of Software in Science: A Knowledge Graph-Based Analysis of Software Mentions in PubMed Central’, PeerJ Computer Science, 8, p.
e835 . Available at: 10.7717/peerj-cs.835 - 75Schindler, D., Zapilko, B. and Krüger, F. (2020)
‘Investigating Software Usage in the Social Sciences: A Knowledge Graph Approach’ , in A. Harth et al. (eds.) The Semantic Web. Cham: Springer International Publishing, pp. 271–286. Available at: 10.1007/978-3-030-49461-2_16 - 76Schirrwagen, J. et al. (2013) ‘Data Curation in the OpenAIRE Scholarly Communication Infrastructure’, Information Standards Quarterly, 25(3), pp. 13–19. Available at: 10.3789/isqv25no3.2013.03
- 77Schmitt, R.H. et al. (2020) ‘NFDI4Ing - The National Research Data Infrastructure for Engineering Sciences’. Zenodo. Available at: 10.5281/zenodo.4015201
- 78Schröcker, K. et al. (2022) ‘Mechanical properties of the LMD-processed material Ferro55 in as-built and heat-treated conditions’, Procedia CIRP, 111, pp. 228–232. Available at: 10.1016/j.procir.2022.08.055
- 79Seaborne, A. and Harris, S. (2013)
‘SPARQL 1.1 Query Language’ , W3C. Available at:https://www.w3.org/TR/2013/REC-sparql11-query-20130321/ - 80Sheveleva, T. et al. (2020) ‘Development of a Domain-Specific Ontology to Support Research Data Management for the Tailored Forming Technology’, Procedia Manufacturing, 52, pp. 107–112. Available at: 10.1016/j.promfg.2020.11.020
- 81Spadaro, G. et al. (2022) ‘The Cooperation Databank: Machine-Readable Science Accelerates Research Synthesis’, Perspectives on Psychological Science, 17(5), pp. 1472–1489. Available at: 10.1177/17456916211053319
- 82Stocker, M. et al. (2022) ‘SKG4EOSC - Scholarly Knowledge Graphs for EOSC: Establishing a backbone of knowledge graphs for FAIR Scholarly Information in EOSC’, Research Ideas and Outcomes, 8, p.
e83789 . Available at: 10.3897/rio.8.e83789 - 83Stocker, M. et al. (2023) ‘FAIR Scientific Information with the Open Research Knowledge Graph’, FAIR Connect, 1(1), pp. 19–21. Available at: 10.3233/FC-221513
- 84Stocker, M. et al. (2024) ‘Rethinking the Production and Publication of Machine-Reusable Expressions of Research Findings’. arXiv preprint. Available at: 10.48550/ARXIV.2405.13129
- 85Tongco, M.D.C. (2007) ‘Purposive Sampling as a Tool for Informant Selection’, Ethnobotany Research and Applications, 5, pp. 147–158.
https://ethnobotanyjournal.org/index.php/era/article/view/126 - 86Uhe, J. and Behrens, B.A. (2019)
‘Manufacturing of Hybrid Solid Components by Tailored Forming’ , in J.P. Wulfsberg, W. Hintze, and B.-A. Behrens (eds.) Production at the leading edge of technology. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 199–208. Available at: 10.1007/978-3-662-60417-5_20 - 87van de Sompel, H. and Lagoze, C. (2009)
‘All aboard: toward a machine-friendly scholarly communication system’ , in T. Hey, S. Tansley, and K.M. Tolle (eds.) The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, pp. 193–199. Available at:http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_part4_sompel_lagoze.pdf - 88Vrandečič, D. and Krötzsch, M. (2014) ‘Wikidata: a free collaborative knowledgebase’, Commun. ACM, 57(10), pp. 78–85. Available at: 10.1145/2629489
- 89Wiens, V., Stocker, M. and Auer, S. (2020)
‘Towards Customizable Chart Visualizations of Tabular Data Using Knowledge Graphs’ , in E. Ishita, N.L.S. Pang, and L. Zhou (eds.) Digital Libraries at Times of Massive Societal Transition. Cham: Springer International Publishing, pp. 71–80. Available at: 10.1007/978-3-030-64452-9_6 - 90Wilkinson, M.D. et al. (2016) ‘The FAIR Guiding Principles for Scientific Data Management and Stewardship’, Scientific data, 3(1), pp. 1–9. Available at: 10.1038/sdata.2016.18
- 91Zou, X. (2020) ‘A Survey on Application of Knowledge Graph’, Journal of Physics: Conference Series, 1487(1), p.
012016 . Available at: 10.1088/1742-6596/1487/1/012016
