Have a personal or library account? Click to login
Organizing Scientific Knowledge from Engineering Sciences Using the Open Research Knowledge Graph: The Tailored Forming Process Chain Use Case Cover

Organizing Scientific Knowledge from Engineering Sciences Using the Open Research Knowledge Graph: The Tailored Forming Process Chain Use Case

Open Access
|Nov 2024

References

  1. 1Ammar, W. et al. (2018) ‘Construction of the Literature graph in semantic scholar’, in S. Bangalore, J. Chu-Carroll, and Y. Li (eds) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers). New Orleans – Louisiana: Association for Computational Linguistics, pp. 8491. Available at: 10.18653/v1/N18-3011
  2. 2Ampatzoglou, A. et al. (2020) ‘Guidelines for Managing Threats to Validity of Secondary Studies in Software Engineering’, in M. Felderer and G.H. Travassos (eds.) Contemporary Empirical Methods in Software Engineering. Cham: Springer International Publishing, pp. 415441. Available at: 10.1007/978-3-030-32489-6_15
  3. 3Anteghini, M. et al. (2020) ‘Representing Semantified Biological Assays in the Open Research Knowledge Graph’, in E. Ishita, N.L.S. Pang, and L. Zhou (eds.) Digital Libraries at Times of Massive Societal Transition. Cham: Springer International Publishing, pp. 8998. Available at: 10.1007/978-3-030-64452-9_8
  4. 4Arndt, S. et al. (2023) ‘Metadata4Ing: An ontology for describing the generation of research data within a scientific activity’. Zenodo. Available at: 10.5281/zenodo.8382665
  5. 5Aryani, A. and Wang, J. (2017) ‘Research Graph: Building a Distributed Graph of Scholarly Works using Research Data Switchboard’, in Open Repositories Conference. Available at: 10.4225/03/58c696655af8a
  6. 6Auer, S. et al. (2007) ‘DBpedia: A Nucleus for a Web of Open Data’, in K. Aberer et al. (eds.) The Semantic Web. Berlin, Heidelberg: Springer, pp. 722735. Available at: 10.1007/978-3-540-76298-0_52
  7. 7Auer, S. et al. (2018) ‘Towards a Knowledge Graph for Science’, in Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics (WIMS ’18). New York, NY, USA: Association for Computing Machinery, pp. 16. Available at: 10.1145/3227609.3227689
  8. 8Auer, S. et al. (2020) ‘Improving Access to Scientific Literature with Knowledge Graphs’, Bibliothek Forschung und Praxis, 44(3), pp. 516529. Available at: 10.1515/bfp-2020-2042
  9. 9Auer, S. et al. (2023a) ‘The sciqa scientific question answering benchmark for scholarly knowledge’, Scientific Reports, 13(1), p. 7240. Available at: 10.1038/s41598-023-33607-z
  10. 10Auer, S. et al. (2023b) ‘Organizing Scholarly Knowledge in the Open Research Knowledge Graph: An Open-Science Platform for FAIR Scholarly Knowledge’, Proceedings of the Conference on Research Data Infrastructure, 1. Available at: 10.52825/cordi.v1i.272
  11. 11Basili, V.R., Caldiera, C. and Rombach, H.D. (1994) ‘Goal Question Metric Paradigm’, Encyclopedia of Software Engineering, 1, pp. 528532. Available at: 10.1002/0471028959.sof142
  12. 12Behrens, B.A. et al. (2019) Manufacturing and Evaluation of Multi-Material Axial-Bearing Washers by Tailored Forming’, Metals, 9(2). Available at: 10.3390/met9020232
  13. 13Bless, C., Baimuratov, I. and Karras, O. (2022) ‘SciKGTeX – Scientific Knowledge Graph TeX’. Available at: https://github.com/Christof93/SciKGTeX
  14. 14Bless, C., Baimuratov, I. and Karras, O. (2023) ‘SciKGTeX - A LATEX Package to Semantically Annotate Contributions in Scientific Publications’, in 2023 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 155164. Available at: 10.1109/JCDL57899.2023.00030
  15. 15Brack, A. et al. (2022) ‘Analysing the Requirements for an Open Research Knowledge Graph: Use Cases, Quality Requirements, and Construction Strategies’, International Journal on Digital Libraries, 23(1), pp. 3355. Available at: 10.1007/s00799-021-00306-x
  16. 16Brockmöller, T. et al. (2020) ‘Computer-Aided Engineering Environment for Designing Tailored Forming Components’, Metals, 10(12). Available at: 10.3390/met10121589
  17. 17Budde, L. et al. (2022) ‘Investigation of the Material Combination 20MnCr5 and X45CrSi9-3 in the Tailored Forming of Shafts with Bearing Seats’, Production Engineering, 16(5), pp. 661671. Available at: 10.1007/s11740-022-01119-w
  18. 18Burton, A. et al. (2017) ‘The Scholix Framework for Interoperability in Data-Literature Information Exchange’, D-Lib Magazine, 23(1/2). Available at: 10.1045/january2017-burton
  19. 19Coors, T. et al. (2020) ‘Investigations on Tailored Forming of AISI 52100 as Rolling Bearing Raceway’, Metals, 10(10), p. 1363. Available at: 10.3390/met10101363
  20. 20COVID-19 Air Quality Data Collection (2021) ‘COVID-19 Air Quality Data Collection’. Available at: https://covid-aqs.fz-juelich.de (Accessed: 21 January 2024).
  21. 21Darari, F. et al. (2018) ‘Completeness Management for RDF Data Sources’, ACM Trans. Web, 12(3). Available at: 10.1145/3196248
  22. 22Dessí, D. et al. (2022) ‘CS-KG: A Large-Scale Knowledge Graph of Research Entities and Claims in Computer Science’, in The Semantic Web – ISWC 2022: 21st International Semantic Web Conference, Virtual Event, October 23–27, 2022, Proceedings. Berlin, Heidelberg: Springer-Verlag, pp. 678696. Available at: 10.1007/978-3-031-19433-7_39
  23. 23Domingo-Fernández, D. et al. (2020) ‘COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology’, Bioinformatics, 37(9), pp. 13321334 . Available at: 10.1093/bioinformatics/btaa834
  24. 24D’Souza, J. et al. (2024) ‘Quality Assessment of Research Comparisons in the Open Research Knowledge Graph: A Case Study’, JLIS.it, 15(1), pp. 126143. Available at: 10.36253/jlis.it-547
  25. 25Färber, M. (2019) ‘The Microsoft Academic Knowledge Graph: A Linked Data Source with 8 Billion Triples of Scholarly Data’, in The Semantic Web - ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part II 18. Springer, pp. 113129. Available at: 10.1007/978-3-030-30796-7_8
  26. 26Gkatzelis, G.I. et al. (2021) ‘The Global Impacts of COVID-19 Lockdowns on Urban Air Pollution: A Critical Review and Recommendations’, Elementa: Science of the Anthropocene, 9(1), p. 00176. Available at: 10.1525/elementa.2021.00176
  27. 27Glinz, M. and Fricker, S.A. (2015) ‘On Shared Understanding in Software Engineering: An Essay’, Computer Science – Research and Development, 30, pp. 363376. Available at: 10.1007/s00450-014-0256-x
  28. 28Goedicke, M. et al. (2024) ‘National Research Data Infrastructure for and with Computer Science (NFDIxCS)’. Zenodo. Available at: 10.5281/zenodo.10557968
  29. 29Grüninger, M. and Fox, M.S. (1995) ‘The Role of Competency Questions in Enterprise Engineering’, in A. Rolstadås (ed.) Benchmarking — Theory and Practice. Boston, MA: Springer US, pp. 2231. Available at: 10.1007/978-0-387-34847-6_3
  30. 30Hammond, T., Pasin, M. and Theodoridis, E. (2017) ‘Data Integration and Disintegration: Managing Springer Nature SciGraph with SHACL and OWL’, in International Workshop on the Semantic Web. Available at: https://ceur-ws.org/Vol-1963/paper493.pdf
  31. 31Hogan, A. et al. (2021) Knowledge Graphs. Springer (Synthesis Lectures on Data, Semantics, and Knowledge). Available at: 10.2200/S01125ED1V01Y202109DSK022
  32. 32Hussein, H. et al. (2022) ‘KGMM – A Maturity Model for Scholarly Knowledge Graphs Based on Intertwined Human-Machine Collaboration’, in Y.-H. Tseng, M. Katsurai, and H.N. Nguyen (eds.) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries. Cham: Springer International Publishing, pp. 253269. Available at: 10.1007/978-3-031-21756-2_21
  33. 33Hussein, H. et al. (2023) ‘Increasing Reproducibility in Science by Interlinking Semantic Artifact Descriptions in a Knowledge Graph’, in D.H. Goh, S.-J. Chen, and S. Tuarob (eds.) Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine Collaboration. Singapore: Springer Nature Singapore, pp. 220229. Available at: 10.1007/978-981-99-8088-8_19
  34. 34Jaradeh, M.Y. et al. (2019) ‘Open Research Knowledge Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge’, in Proceedings of the 10th International Conference on Knowledge Capture. New York, NY, USA: Association for Computing Machinery (K-CAP ’19), pp. 243246. Available at: 10.1145/3360901.3364435
  35. 35Jaradeh, M.Y., Stocker, M. and Auer, S. (2020) ‘Question Answering on Scholarly Knowledge Graphs’, in M. Hall et al. (eds.) Digital Libraries for Open Knowledge. Cham: Springer International Publishing, pp. 1932. Available at: 10.1007/978-3-030-54956-5_2
  36. 36Jeschke, J.M. et al. (2020) Hi-Knowledge.org. Available at: https://hi-knowledge.org/ (Accessed: 21 January 2024).
  37. 37Kapogiannis, G. and Sherratt, F. (2018) ‘Impact of Integrated Collaborative Technologies to Form a Collaborative Culture in Construction Projects’, Built Environment Project and Asset Management, 8(1), pp. 2438. Available at: 10.1108/BEPAM-07-2017-0043
  38. 38Karras, O. (2024) ‘Analysis of Tailored Forming Process Chains in Mechanical Process Engineering’. Zenodo. Available at: 10.5281/zenodo.13752753
  39. 39Karras, O. et al. (2021) ‘Researcher or Crowd Member? Why not both! The Open Research Knowledge Graph for Applying and Communicating CrowdRE Research’, in 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). Los Alamitos, CA, USA: IEEE Computer Society, pp. 320327. Available at: 10.1109/REW53955.2021.00056
  40. 40Karras, O. et al. (2023b) ‘“FAIR-by-Design” Artifacts: Enriching Publications and Software with FAIR Scientific Information at the Time of Creation’, in Proceedings of the NFDI4Ing Conference 2023 – Innovation in Research Data Management: Bridging the Gaps Between Disciplines and Opening New Perspectives for Research in Engineering Science. NFDI4Ing, pp. 3435. Available at: 10.5281/zenodo.10036957
  41. 41Karras, O. et al. (2023c) ‘Divide and Conquer the EmpiRE: A Community-Maintainable Knowledge Graph of Empirical Research in Requirements Engineering’, in 2023 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). Los Alamitos, CA, USA: IEEE Computer Society, pp. 112. Available at: 10.1109/ESEM56168.2023.10304795
  42. 42Karras, O. et al. (2024) ‘Organizing Scientific Knowledge From Energy System Research Using the Open Research Knowledge Graph’, arXiv preprint arXiv:2401. 13365 [Preprint]. Available at: 10.48550/arXiv.2401.13365
  43. 43Karras, O., Budde, L. and Merkel, P. (2023a) ‘Tailored Forming Process Chain for the Manufacturing of Hybrid Components with Bearing Raceways Using Different Material Combinations’. Open Research Knowledge Graph. Available at: 10.48366/R187049
  44. 44Karras, O. and Groen, E.C. (2021) ‘Overview of Approaches that Classify User Feedback as Feature Request’. Open Research Knowledge Graph. Available at: 10.48366/R112387
  45. 45Karras, O. and Khan, J.A. (2021) ‘Overview of Crowd Intelligence in Requirements Engineering’, Open Research Knowledge Graph. Available at: 10.48366/R114155
  46. 46Karras, O., Schneider, K. and Fricker, S.A. (2020) ‘Representing Software Project Vision by Means of Video: A Quality Model for Vision Videos’, Journal of Systems and Software, 162, p. 110479. Available at: 10.1016/j.jss.2019.110479
  47. 47Keet, C.M. (2013) ‘Open World Assumption’, in W. Dubitzky et al. (eds.) Encyclopedia of Systems Biology. New York, NY: Springer New York, pp. 15671567. Available at: 10.1007/978-1-4419-9863-7_734
  48. 48Kejriwal, M. (2022) ‘Knowledge Graphs: A Practical Review of the Research Landscape’, Information, 13(4). Available at: 10.3390/info13040161
  49. 49Khan, J.A. et al. (2019) ‘Crowd Intelligence in Requirements Engineering: Current Status and Future Directions’, in E. Knauss and M. Goedicke (eds.) Requirements Engineering: Foundation for Software Quality. Cham: Springer International Publishing, pp. 245261. Available at: 10.1007/978-3-030-15538-4_18
  50. 50Kitchenham, B.A. and Pfleeger, S.L. (2008) ‘Personal Opinion Surveys’, in F. Shull, J. Singer, and D.I.K. Sjøberg (eds.) Guide to Advanced Empirical Software Engineering. London: Springer London, pp. 6392. Available at: 10.1007/978-1-84800-044-5_3
  51. 51Knoll, C. (2022) ‘Examining the ORKG towards Representation of Control Theoretic Knowledge – Preliminary Experiences and Conclusions’, in Companion Proceedings of the Web Conference 2022. New York, NY, USA: Association for Computing Machinery (WWW ’22), pp. 810817. Available at: 10.1145/3487553.3524661
  52. 52Knublauch, H. and Kontokostas, D. (2017) Shapes Constraint Language (SHACL). W3C. Available at: https://www.w3.org/TR/2017/REC-shacl-20170720/
  53. 53Kruse, J. et al. (2019) ‘Cross-wedge rolling of PTA-welded hybrid steel billets with rolling bearing steel and hard material coatings’, AIP Conference Proceedings, 2113(1), p. 040019. Available at: 10.1063/1.5112553
  54. 54Kullmann, F. et al. (2021) ‘Comparison of Studies on Germany’s Energy Supply in 2050’. Open Research Knowledge Graph. Available at: 10.48366/r153801
  55. 55Manghi, P. et al. (2019) ‘The OpenAIRE Research Graph Data Model’. Zenodo. Available at: 10.5281/zenodo.2643199
  56. 56Martin, L. and Henrich, A. (2022) ‘RDFtex: Knowledge Exchange Between LaTeX-Based Research Publications and Scientific Knowledge Graphs’, in G. Silvello et al. (eds.) Linking Theory and Practice of Digital Libraries. Cham: Springer International Publishing, pp. 2638. Available at: 10.1007/978-3-031-16802-4_3
  57. 57Mozgova, I. et al. (2022) ‘Knowledge Annotation within Research Data Management System for Oxygen-Free Production Technologies’, Proceedings of the Design Society, 2, pp. 525532. Available at: 10.1017/pds.2022.54
  58. 58Nieße, A. et al. (2022) ‘NFDI4Energy – National Research Data Infrastructure for the Interdisciplinary Energy System Research’. Zenodo. Available at: 10.5281/zenodo.6772013
  59. 59Oelen, A. et al. (2020) ‘COVID-19 Reproductive Number Estimates’. Open Research Knowledge Graph. Available at: 10.48366/R44930
  60. 60Pape, F. et al. (2018) ‘Tribological Study on Tailored-Formed Axial Bearing Washers’, Tribology Online, 13(6), pp. 320326. Available at: 10.2474/trol.13.320
  61. 61Papers With Code (2020) Papers With Code. Available at: https://paperswithcode.com/about (Accessed: 21 January 2024).
  62. 62Papke, T. et al. (2018) Bulk Metal Forming of Additively Manufactured Elements’, in F. Vollertsen et al. (eds.) MATEC Web of Conferences, 190, p. 03002. Available at: 10.1051/matecconf/201819003002
  63. 63Papke, T. et al. (2023) ‘Alternating Additive Manufacturing and Forming—An Innovative Manufacturing Approach’, Journal of Manufacturing and Materials Processing, 7(3), p. 90. Available at: 10.3390/jmmp7030090
  64. 64Penev, L. et al. (2019) ‘OpenBiodiv: A Knowledge Graph for Literature-Extracted Linked Open Data in Biodiversity Science’, Publications, 7(2), p. 38. Available at: 10.3390/publications7020038
  65. 65Prakash, A. and Sandfeld, S. (2018) ‘Chances and Challenges in Fusing Data Science with Materials Science’, Practical Metallography, 55(8), pp. 493514. Available at: 10.3139/147.110539
  66. 66Priem, J., Piwowar, H. and Orr, R. (2022) ‘OpenAlex: A Fully-Open Index of Scholarly Works, Authors, Venues, Institutions, and Concepts’, arXiv preprint [Preprint]. Available at: 10.48550/arXiv.2205.01833
  67. 67Robson, C. and McCartan, K. (2016) Real World Research. John Wiley & Sons.
  68. 68Rossenova, L. et al. (2023) ‘KGI4NFDI: Knowledge graph infrastructure for the German national research data infrastructure’. Zenodo. Available at: 10.5281/zenodo.8337432
  69. 69Runeson, P., Engström, E. and Storey, M.-A. (2020) ‘The Design Science Paradigm as a Frame for Empirical Software Engineering’, in M. Felderer and G.H. Travassos (eds.) Contemporary Empirical Methods in Software Engineering. Cham: Springer International Publishing, pp. 127147. Available at: 10.1007/978-3-030-32489-6_5
  70. 70Runnwerth, M., Stocker, M. and Auer, S. (2020) ‘Operational Research Literature as a Use Case for the Open Research Knowledge Graph’, in A.M. Bigatti et al. (eds.) Mathematical Software—ICMS 2020. Cham: Springer International Publishing, pp. 327334. Available at: 10.1007/978-3-030-52200-1_32
  71. 71Santos, R., Groen, E.C. and Villela, K. (2019) ‘An Overview of User Feedback Classification Approaches’, in REFSQ Workshops, pp. 357369. Available at: https://ceur-ws.org/Vol-2376/NLP4RE19_paper11.pdf
  72. 72Schimmler, S. (2023) ‘NFDI4DataScience: National Research Data Infrastructure for Data Science and AI’. Available at: https://www.dfg.de/resource/blob/174308/e173d5d18c9e740d2b1e830280ad3b30/nfdi4datascience-abstract-data.pdf
  73. 73Schindler, D. et al. (2021) ‘SoMeSci - A 5 Star Open Data Gold Standard Knowledge Graph of Software Mentions in Scientific Articles’, in 30th ACM International Conference on Information & Knowledge Management. New York, NY, USA: Association for Computing Machinery (CIKM ’21), pp. 45744583. Available at: 10.1145/3459637.3482017
  74. 74Schindler, D. et al. (2022) ‘The Role of Software in Science: A Knowledge Graph-Based Analysis of Software Mentions in PubMed Central’, PeerJ Computer Science, 8, p. e835. Available at: 10.7717/peerj-cs.835
  75. 75Schindler, D., Zapilko, B. and Krüger, F. (2020) ‘Investigating Software Usage in the Social Sciences: A Knowledge Graph Approach’, in A. Harth et al. (eds.) The Semantic Web. Cham: Springer International Publishing, pp. 271286. Available at: 10.1007/978-3-030-49461-2_16
  76. 76Schirrwagen, J. et al. (2013) ‘Data Curation in the OpenAIRE Scholarly Communication Infrastructure’, Information Standards Quarterly, 25(3), pp. 1319. Available at: 10.3789/isqv25no3.2013.03
  77. 77Schmitt, R.H. et al. (2020) ‘NFDI4Ing - The National Research Data Infrastructure for Engineering Sciences’. Zenodo. Available at: 10.5281/zenodo.4015201
  78. 78Schröcker, K. et al. (2022) ‘Mechanical properties of the LMD-processed material Ferro55 in as-built and heat-treated conditions’, Procedia CIRP, 111, pp. 228232. Available at: 10.1016/j.procir.2022.08.055
  79. 79Seaborne, A. and Harris, S. (2013) ‘SPARQL 1.1 Query Language’, W3C. Available at: https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
  80. 80Sheveleva, T. et al. (2020) ‘Development of a Domain-Specific Ontology to Support Research Data Management for the Tailored Forming Technology’, Procedia Manufacturing, 52, pp. 107112. Available at: 10.1016/j.promfg.2020.11.020
  81. 81Spadaro, G. et al. (2022) ‘The Cooperation Databank: Machine-Readable Science Accelerates Research Synthesis’, Perspectives on Psychological Science, 17(5), pp. 14721489. Available at: 10.1177/17456916211053319
  82. 82Stocker, M. et al. (2022) ‘SKG4EOSC - Scholarly Knowledge Graphs for EOSC: Establishing a backbone of knowledge graphs for FAIR Scholarly Information in EOSC’, Research Ideas and Outcomes, 8, p. e83789. Available at: 10.3897/rio.8.e83789
  83. 83Stocker, M. et al. (2023) ‘FAIR Scientific Information with the Open Research Knowledge Graph’, FAIR Connect, 1(1), pp. 1921. Available at: 10.3233/FC-221513
  84. 84Stocker, M. et al. (2024) ‘Rethinking the Production and Publication of Machine-Reusable Expressions of Research Findings’. arXiv preprint. Available at: 10.48550/ARXIV.2405.13129
  85. 85Tongco, M.D.C. (2007) ‘Purposive Sampling as a Tool for Informant Selection’, Ethnobotany Research and Applications, 5, pp. 147158. https://ethnobotanyjournal.org/index.php/era/article/view/126
  86. 86Uhe, J. and Behrens, B.A. (2019) ‘Manufacturing of Hybrid Solid Components by Tailored Forming’, in J.P. Wulfsberg, W. Hintze, and B.-A. Behrens (eds.) Production at the leading edge of technology. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 199208. Available at: 10.1007/978-3-662-60417-5_20
  87. 87van de Sompel, H. and Lagoze, C. (2009) ‘All aboard: toward a machine-friendly scholarly communication system’, in T. Hey, S. Tansley, and K.M. Tolle (eds.) The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, pp. 193199. Available at: http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_part4_sompel_lagoze.pdf
  88. 88Vrandečič, D. and Krötzsch, M. (2014) ‘Wikidata: a free collaborative knowledgebase’, Commun. ACM, 57(10), pp. 7885. Available at: 10.1145/2629489
  89. 89Wiens, V., Stocker, M. and Auer, S. (2020) ‘Towards Customizable Chart Visualizations of Tabular Data Using Knowledge Graphs’, in E. Ishita, N.L.S. Pang, and L. Zhou (eds.) Digital Libraries at Times of Massive Societal Transition. Cham: Springer International Publishing, pp. 7180. Available at: 10.1007/978-3-030-64452-9_6
  90. 90Wilkinson, M.D. et al. (2016) ‘The FAIR Guiding Principles for Scientific Data Management and Stewardship’, Scientific data, 3(1), pp. 19. Available at: 10.1038/sdata.2016.18
  91. 91Zou, X. (2020) ‘A Survey on Application of Knowledge Graph’, Journal of Physics: Conference Series, 1487(1), p. 012016. Available at: 10.1088/1742-6596/1487/1/012016
Language: English
Submitted on: Mar 1, 2024
Accepted on: Oct 4, 2024
Published on: Nov 6, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Oliver Karras, Laura Budde, Paulina Merkel, Jörg Hermsdorf, Malte Stonis, Ludger Overmeyer, Bernd-Arno Behrens, Sören Auer, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.