References
- Aeberhard, M, Stefan, M and Forina, M 1991. Wine. UCI Machine Learning Repository. DOI: 10.24432/C5PC7J
- Agrawal, R, Gehrke, J, Gunopulos, D and Raghavan, P 1998. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 27(2): 94–105. DOI: 10.1145/276305.276314
- Ankerst, M, Breunig, MM, Kriegel, HP and Sande, J 1999. Optics: ordering points to identify the clustering structure. ACM SIGMOD Record, 28(2): 49–60. DOI: 10.1145/304181.304187
- Birant, D and Kut, A 2007. St-dbscan: An algorithm for clustering spatial–temporal data. Data & Knowledge Engineering, 60(1): 208–221. DOI: 10.1016/j.datak.2006.01.013
- Cadiou, E, Sarzi, M and Dubois, Y 2020. Gravitational clustering of stars and gas in galaxy simulations. Monthly Notices of the Royal Astronomical Society, 496(4): 4986–5001.
- Cai, B, Huang, G, Yong, X, Jing, H, Huang, GL, Ke, D, et al. 2018. Clustering of multiple density peaks. In: 22nd Pacific–Asia Conference, PAKDD 2018, Melbourne, Australia on
3–6 June 2018 , 413–425. DOI: 10.1007/978-3-319-93040-4_33 - Cai, J, Hao, J, Yang, H, Zhao, X, Yang, Y, et al. 2023. A review on semi-supervised clustering. Information Sciences, 632: 164–200. DOI: 10.1016/j.ins.2023.02.088
- Charytanowicz, M, Jerzy, N, Piotr, K, Piotr, K, Szymon, L, et al. 2012. Seeds. UCI Machine Learning Repository. DOI: 10.24432/C5H30K
- Chen, X, Wu, H, Lichti, D, Han, X, Ban, Y, Li, P, Deng, H, et al. 2022. Extraction of indoor objects based on the exponential function density clustering model. Information Sciences, 607: 1111–1135. DOI: 10.1016/j.ins.2022.06.032
- Das, S, Abraham, A and Konar, A 2008. Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 29(5): 688–699. DOI: 10.1016/j.patrec.2007.12.002
- Dhawan, AP and Dai, S 2018.
Clustering and pattern classification . In: Dhawan, AP, Huang, HK, and Kim, DS (eds.), Principles and Advanced Methods in Medical Imaging and Image Analysis. Singapore: World Scientific. pp. 229–265. DOI: 10.1142/9789812814807_0010 - Elfarra, BK, El Khateeb, TJ and Ashour, WM 2013. BH-centroids: A new efficient clustering algorithm. Work, 1(1): 15–24. DOI: 10.14257/ijaiasd.2013.1.1.02
- Ertöz, L, Steinbach, M and Kumar, V 2003. Finding clusters of different sizes shapes and densities in noisy high dimensional data. In: The 2003 SIAM International Conference on Data Mining, San Francisco, CA on
1–3 May 2003 , pp. 47–58. DOI: 10.1137/1.9781611972733.5 - Ester, M, Kriegel, HP, Sander, J and Xu, X 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon on
2–4 August 1996 , pp. 226–231. - Fisher, RA 1988. Iris. UCI Machine Learning Repository. DOI: 10.24432/C56C76
- German, B 1987. Glass Identification. UCI Machine Learning Repository. DOI: 10.24432/C5WW2P
- Ghazal, T, Hussain MZ, Said, RA and Nadeem, A 2021. Performances of K-means clustering algorithm with Different Distance Metrics. Intelligent Automation and Soft Computing, 30(2): 735–742. DOI: 10.32604/iasc.2021.019067
- Hai-Feng, Y, Xiao-Na, Y, Jiang-Hui, C, Yu-Qing, Y, et al. 2023. An in-depth exploration of LAMOST unknown spectra based on density clustering. Research in Astronomy and Astrophysics, 23(5). DOI: 10.1088/1674-4527/acc507
- He, Y, Tan, H, Luo, W, Mao, H, Ma, D, Feng, S, Fan, J et al. 2011. Mr-dbscan: An efficient parallel density-based clustering algorithm using mapreduce. In: 2011 IEEE 17th International Conference on Parallel and Distrubuted Systems, Tianan, Taiwan on
7–9 December 2011 , pp. 473–480. DOI: 10.1109/ICPADS.2011.83 - Hinneburg, A and Keim, DA 1998. An efficient approach to clustering in large multimedia databases with noise. In: KDD ’98: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY on
27–31 August 1998 , pp. 58–65. - Huang, Y, Yang, H and Zhang, L 2019. A novel clustering algorithm based on gravity. Journal of Ambient Intelligence and Humanized Computing, 10(6):2461–2470.
- Jankowiak, M, Kaczmarek, M, Wozniak, M and Wojciechowski, K 2017. Gravity-based clustering of time series data. Information Sciences, 385-386: 52–64.
- Jarvis, RA and Patrick, EA 1973. Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers, C–22(11): 1025–1034. DOI: 10.1109/T-C.1973.223640
- Kuwil, FH, Atila, Ü, Abu-Issa, R and Murtagh, F 2020. A novel data clustering algorithm based on gravity center methodology. Expert Systems with Applications, 156: 113435. DOI: 10.1016/j.eswa.2020.113435
- Liu, P, Zhou, D and Wu, N 2007. VDBSCAN: varied density based spatial clustering of applications with noise. In: International Conference on Service Systems and Service Management, Chengdu, China on
9–11 June 2007 , pp. 1–4. DOI: 10.1109/ICSSSM.2007.4280175 - Liu, R, Wang, H and Yu, X 2018. Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Information Sciiences, 450: 200–226. DOI: 10.1016/j.ins.2018.03.031
- Liu, W and Hou, J 2016. Study on a density peak based clustering algorithm. In: 7th International Conference on Intelligent Control and Information Processing (ICICIP), Siem Reap, Cambodia on
1–4 December 2016 , pp. 60–67. DOI: 10.1109/ICICIP.2016.7885877 - Louhichi, S, Gzara, M and Ben-Abdallah, H 2017. Unsupervised varied density based clustering algorithm using spline. Pattern Recognition Letters, 93: 48–57. DOI: 10.1016/j.patrec.2016.10.014
- Ni, L, Luo, W, Zhu, W and Liu, W 2019. Clustering by finding prominent peaks in density space. Engineering Applications Of Artifical Intelligence, 85: 727–739. DOI: 10.1016/j.engappai.2019.07.015
- Rodriguez, A and Laio, A 2014. Clustering by fast search and find of density peaks. Science, 344(6191): 1492–1496. DOI: 10.1126/science.1242072
- Wolberg, W, Mangasarian, O, Street, N and Street, W 1995. Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. DOI: 10.24432/C5DW2B
- Xu, R and Wunsch, D,
II 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3): 645–678. DOI: 10.1109/TNN.2005.845141 - Xu, X, Ding, S, Du, M and Xue, Y 2016. DPCG: An efficient density peaks clustering algorithm based on grid. International Journal of Machine Learnning and Cybernetics, 9: 743–754. DOI: 10.1007/s13042-016-0603-2
- Yan, Z, Luo, W, Bu, C and Ni, L 2016. Clustering spatial data by the neighbors intersection and the density difference. In: UCC’16: 9th International Conference on Utility and Cloud Computing, Shanghai, China on
6–9 December 2016 , pp. 217–226.
