Have a personal or library account? Click to login
Black Hole Clustering: Gravity-Based Approach with No Predetermined Parameters Cover

Black Hole Clustering: Gravity-Based Approach with No Predetermined Parameters

Open Access
|May 2024

References

  1. Aeberhard, M, Stefan, M and Forina, M 1991. Wine. UCI Machine Learning Repository. DOI: 10.24432/C5PC7J
  2. Agrawal, R, Gehrke, J, Gunopulos, D and Raghavan, P 1998. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 27(2): 94105. DOI: 10.1145/276305.276314
  3. Ankerst, M, Breunig, MM, Kriegel, HP and Sande, J 1999. Optics: ordering points to identify the clustering structure. ACM SIGMOD Record, 28(2): 4960. DOI: 10.1145/304181.304187
  4. Birant, D and Kut, A 2007. St-dbscan: An algorithm for clustering spatial–temporal data. Data & Knowledge Engineering, 60(1): 208221. DOI: 10.1016/j.datak.2006.01.013
  5. Cadiou, E, Sarzi, M and Dubois, Y 2020. Gravitational clustering of stars and gas in galaxy simulations. Monthly Notices of the Royal Astronomical Society, 496(4): 49865001.
  6. Cai, B, Huang, G, Yong, X, Jing, H, Huang, GL, Ke, D, et al. 2018. Clustering of multiple density peaks. In: 22nd Pacific–Asia Conference, PAKDD 2018, Melbourne, Australia on 3–6 June 2018, 413425. DOI: 10.1007/978-3-319-93040-4_33
  7. Cai, J, Hao, J, Yang, H, Zhao, X, Yang, Y, et al. 2023. A review on semi-supervised clustering. Information Sciences, 632: 164200. DOI: 10.1016/j.ins.2023.02.088
  8. Charytanowicz, M, Jerzy, N, Piotr, K, Piotr, K, Szymon, L, et al. 2012. Seeds. UCI Machine Learning Repository. DOI: 10.24432/C5H30K
  9. Chen, X, Wu, H, Lichti, D, Han, X, Ban, Y, Li, P, Deng, H, et al. 2022. Extraction of indoor objects based on the exponential function density clustering model. Information Sciences, 607: 11111135. DOI: 10.1016/j.ins.2022.06.032
  10. Das, S, Abraham, A and Konar, A 2008. Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 29(5): 688699. DOI: 10.1016/j.patrec.2007.12.002
  11. Dhawan, AP and Dai, S 2018. Clustering and pattern classification. In: Dhawan, AP, Huang, HK, and Kim, DS (eds.), Principles and Advanced Methods in Medical Imaging and Image Analysis. Singapore: World Scientific. pp. 229265. DOI: 10.1142/9789812814807_0010
  12. Elfarra, BK, El Khateeb, TJ and Ashour, WM 2013. BH-centroids: A new efficient clustering algorithm. Work, 1(1): 1524. DOI: 10.14257/ijaiasd.2013.1.1.02
  13. Ertöz, L, Steinbach, M and Kumar, V 2003. Finding clusters of different sizes shapes and densities in noisy high dimensional data. In: The 2003 SIAM International Conference on Data Mining, San Francisco, CA on 1–3 May 2003, pp. 4758. DOI: 10.1137/1.9781611972733.5
  14. Ester, M, Kriegel, HP, Sander, J and Xu, X 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon on 2–4 August 1996, pp. 226231.
  15. Fisher, RA 1988. Iris. UCI Machine Learning Repository. DOI: 10.24432/C56C76
  16. German, B 1987. Glass Identification. UCI Machine Learning Repository. DOI: 10.24432/C5WW2P
  17. Ghazal, T, Hussain MZ, Said, RA and Nadeem, A 2021. Performances of K-means clustering algorithm with Different Distance Metrics. Intelligent Automation and Soft Computing, 30(2): 735742. DOI: 10.32604/iasc.2021.019067
  18. Hai-Feng, Y, Xiao-Na, Y, Jiang-Hui, C, Yu-Qing, Y, et al. 2023. An in-depth exploration of LAMOST unknown spectra based on density clustering. Research in Astronomy and Astrophysics, 23(5). DOI: 10.1088/1674-4527/acc507
  19. He, Y, Tan, H, Luo, W, Mao, H, Ma, D, Feng, S, Fan, J et al. 2011. Mr-dbscan: An efficient parallel density-based clustering algorithm using mapreduce. In: 2011 IEEE 17th International Conference on Parallel and Distrubuted Systems, Tianan, Taiwan on 7–9 December 2011, pp. 473480. DOI: 10.1109/ICPADS.2011.83
  20. Hinneburg, A and Keim, DA 1998. An efficient approach to clustering in large multimedia databases with noise. In: KDD ’98: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY on 27–31 August 1998, pp. 5865.
  21. Huang, Y, Yang, H and Zhang, L 2019. A novel clustering algorithm based on gravity. Journal of Ambient Intelligence and Humanized Computing, 10(6):24612470.
  22. Jankowiak, M, Kaczmarek, M, Wozniak, M and Wojciechowski, K 2017. Gravity-based clustering of time series data. Information Sciences, 385-386: 5264.
  23. Jarvis, RA and Patrick, EA 1973. Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers, C–22(11): 10251034. DOI: 10.1109/T-C.1973.223640
  24. Kuwil, FH, Atila, Ü, Abu-Issa, R and Murtagh, F 2020. A novel data clustering algorithm based on gravity center methodology. Expert Systems with Applications, 156: 113435. DOI: 10.1016/j.eswa.2020.113435
  25. Liu, P, Zhou, D and Wu, N 2007. VDBSCAN: varied density based spatial clustering of applications with noise. In: International Conference on Service Systems and Service Management, Chengdu, China on 9–11 June 2007, pp. 14. DOI: 10.1109/ICSSSM.2007.4280175
  26. Liu, R, Wang, H and Yu, X 2018. Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Information Sciiences, 450: 200226. DOI: 10.1016/j.ins.2018.03.031
  27. Liu, W and Hou, J 2016. Study on a density peak based clustering algorithm. In: 7th International Conference on Intelligent Control and Information Processing (ICICIP), Siem Reap, Cambodia on 1–4 December 2016, pp. 6067. DOI: 10.1109/ICICIP.2016.7885877
  28. Louhichi, S, Gzara, M and Ben-Abdallah, H 2017. Unsupervised varied density based clustering algorithm using spline. Pattern Recognition Letters, 93: 4857. DOI: 10.1016/j.patrec.2016.10.014
  29. Ni, L, Luo, W, Zhu, W and Liu, W 2019. Clustering by finding prominent peaks in density space. Engineering Applications Of Artifical Intelligence, 85: 727739. DOI: 10.1016/j.engappai.2019.07.015
  30. Rodriguez, A and Laio, A 2014. Clustering by fast search and find of density peaks. Science, 344(6191): 14921496. DOI: 10.1126/science.1242072
  31. Wolberg, W, Mangasarian, O, Street, N and Street, W 1995. Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. DOI: 10.24432/C5DW2B
  32. Xu, R and Wunsch, D, II 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3): 645678. DOI: 10.1109/TNN.2005.845141
  33. Xu, X, Ding, S, Du, M and Xue, Y 2016. DPCG: An efficient density peaks clustering algorithm based on grid. International Journal of Machine Learnning and Cybernetics, 9: 743754. DOI: 10.1007/s13042-016-0603-2
  34. Yan, Z, Luo, W, Bu, C and Ni, L 2016. Clustering spatial data by the neighbors intersection and the density difference. In: UCC’16: 9th International Conference on Utility and Cloud Computing, Shanghai, China on 6–9 December 2016, pp. 217226.
Language: English
Submitted on: Jun 10, 2023
|
Accepted on: Nov 16, 2023
|
Published on: May 7, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Belal K. ELFarra, Mamoun A. A. Salaha, Wesam M. Ashour, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.