References
- 1Ahmed, CM, Palleti, VR and Mathur, AP. 2017.
WADI . In: Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, ACM. DOI: 10.1145/3055366.3055375 - 2Amer, M and Goldstein, M. 2012. Nearest-neighbor and clustering based anomaly detection algorithms for rapidminer. In: Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM 2012), pp. 1–12.
- 3Bandaragoda, TR, Ting, KM, Albrecht, D, Liu, FT and Wells, JR. 2014. Efficient anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE International Conference on Data Mining Workshop, IEEE. DOI: 10.1109/ICDMW.2014.70
- 4Boniol, P, Palpanas, T, Meftah, M and Remy, E. 2020. GraphAn. Proceedings of the VLDB Endowment, 13(12): 2941–2944. DOI: 10.14778/3415478.3415514
- 5Breunig, MM, Kriegel, H-P, Ng, RT and Sander, J. 2000. LOF. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, ACM. DOI: 10.1145/342009.335388
- 6Budiarto, EH, Permanasari, AE and Fauziati, S. 2019. Unsupervised anomaly detection using k-means, local outlier factor and one class SVM. In: 2019 5th International Conference on Science and Technology (ICST), IEEE. DOI: 10.1109/ICST47872.2019.9166366
- 7Bulusu, S, Kailkhura, B, Li, B, Varshney, PK and Song, D. 2020. Anomalous example detection in deep learning: A survey. IEEE Access, 8: 132330–132347. DOI: 10.1109/ACCESS.2020.3010274
- 8Chatterjee, A and Ahmed, BS. 2022. IoT anomaly detection methods and applications: A survey. Internet of Things, 19: 100568. DOI: 10.1016/j.iot.2022.100568
- 9Chen, J, Mao, Q and Liu, D. 2020.
Dual-path transformer network: Direct context-aware modeling for end-to-end monaural speech separation . In: Interspeech 2020, ISCA. DOI: 10.21437/Interspeech.2020-2205 - 10Chen, Z, Chen, D, Zhang, X, Yuan, Z and Cheng, X. 2022. Learning graph structures with transformer for multivariate time-series anomaly detection in IoT. IEEE Internet of Things Journal, 9(12): 9179–9189. DOI: 10.1109/JIOT.2021.3100509
- 11Chowdhury, S, Deb, A, Nurujjaman, M and Barman, C. 2017. Identification of pre-seismic anomalies of soil radon-222 signal using Hilbert–Huang transform. Natural Hazards, 87(3): 1587–1606. DOI: 10.1007/s11069-017-2835-1
- 12Darban, ZZ, Webb, GI, Pan, S, Aggarwal, CC and Salehi, M. 2022. Deep learning for time series anomaly detection: A survey. arXiv:2211.05244.
- 13Dau, HA, Bagnall, A, Kamgar, K, Yeh, C-CM, Zhu, Y, Gharghabi, S, Ratanamahatana, CA and Keogh, E. 2019. The UCR time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6): 1293–1305. DOI: 10.1109/JAS.2019.1911747
- 14Deng, A and Hooi, B. 2021. Graph neural networkbased anomaly detection in multivariate time series. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5): 4027–4035. DOI: 10.1609/aaai.v35i5.16523
- 15Dhiman, H, Deb, D, Muyeen, SM and Kamwa, I. 2021. Wind turbine gearbox anomaly detection based on adaptive threshold and twin support vector machines. IEEE Transactions on Energy Conversion, 36(4): 3462–3469. DOI: 10.1109/TEC.2021.3075897
- 16Ergen, T and Kozat, SS. 2020. Unsupervised anomaly detection with LSTM neural networks. IEEE Transactions on Neural Networks and Learning Systems, 31(8): 3127–3141. DOI: 10.1109/TNNLS.2019.2935975
- 17Finn, C, Abbeel, P and Levine, S. 2017. Model-agnostic meta-learning for fast adaptation of deep networks, In: International conference on machine learning, PMLR, pp. 1126–1135.
- 18Goldstein, M and Dengel, A. 2012. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm, KI-2012: poster and demo track, 1: 59–63.
- 19Hu, W, Gao, J, Li, B, Wu, O, Du, J and Maybank, S. 2020. Anomaly detection using local kernel density estimation and context-based regression. IEEE Transactions on Knowledge and Data Engineering, 32(2): 218–233. DOI: 10.1109/TKDE.2018.2882404
- 20Huang, S, Liu, Y, Fung, C, He, R, Zhao, Y, Yang, H and Luan, Z. 2020. HitAnomaly: Hierarchical transformers for anomaly detection in system log. IEEE Transactions on Network and Service Management, 17(4): 2064–2076. DOI: 10.1109/TNSM.2020.3034647
- 21Hundman, K, Constantinou, V, Laporte, C, Colwell, I and Soderstrom, T. 2018. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395. DOI: 10.1145/3219819.3219845
- 22Jin, Y, Qiu, C, Sun, L, Peng, X and Zhou, J. 2017. Anomaly detection in time series via robust PCA. In: 2017 2 nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), IEEE, pp. 352–355. DOI: 10.1109/ICITE.2017.8056937
- 23Kingsbury, K and Alvaro, P. 2020. Elle. Proceedings of the VLDB Endowment, 14(3): 268–280. DOI: 10.14778/3430915.3430918
- 24Kiss, I, Genge, B, Haller, P and Sebestyen, G. 2014. Data clustering-based anomaly detection in industrial control systems. In: 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP), IEEE. DOI: 10.1109/ICCP.2014.6937009
- 25Li, D, Chen, D, Jin, B, Shi, L, Goh, J and Ng, S-K. 2019. Mad-GAN: Multivariate anomaly detection for time series data with generative adversarial networks. In: Artificial Neural Networks and Machine Learning–ICANN 2019: Text and Time Series: 28th International Conference on Artificial Neural Networks, Munich, Germany,
September 17–19, 2019 , Proceedings, Part IV,Springer , pp. 703–716. DOI: 10.1007/978-3-030-30490-4_56 - 26Li, Z, Zhao, Y, Botta, N, Ionescu, C and Hu, X. 2020. COPOD: Copula-based outlier detection. In: 2020 IEEE International Conference on Data Mining (ICDM), IEEE. DOI: 10.1109/ICDM50108.2020.00135
- 27Luo, Y, Chen, Z and Yoshioka, T. 2020. Dual-path RNN: Efficient long sequence modeling for time-domain single-channel speech separation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. DOI: 10.1109/ICASSP40776.2020.9054266
- 28Malhotra, P, Ramakrishnan, A, Anand, G, Vig, L, Agarwal, P and Shroff, G. 2016. Lstm-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint
arXiv:1607.00148 . - 29Mathur, AP and Tippenhauer, NO. 2016.
SWaT: A water treatment testbed for research and training on ICS security . In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), IEEE. DOI: 10.1109/CySWater.2016.7469060 - 30Moody, G and Mark, R. 2001. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3): 45–50. DOI: 10.1109/51.932724
- 31Pan, X, Tan, J, Kavulya, S, Gandhi, R and Narasimhan, P. 2010. Ganesha, ACM SIGMETRICS Performance Evaluation Review, 37(3): 8–13. DOI: 10.1145/1710115.1710118
- 32Park, D, Hoshi, Y and Kemp, CC. 2018. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3): 1544–1551. DOI: 10.1109/LRA.2018.2801475
- 33Patcha, A and Park, J-M. 2007. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12): 3448–3470. DOI: 10.1016/j.comnet.2007.02.001
- 34Provotar, OI, Linder, YM and Veres, MM. 2019. Unsupervised anomaly detection in time series using LSTM-based autoencoders. In: 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), IEEE. DOI: 10.1109/ATIT49449.2019.9030505
- 35Qu, Z, Su, L, Wang, X, Zheng, S, Song, X and Song, X. 2018. A unsupervised learning method of anomaly detection using GRU. In: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), IEEE. DOI: 10.1109/BigComp.2018.00126
- 36Ramaswamy, S, Rastogi, R and Shim, K. 2000. Efficient algorithms for mining outliers from large data sets. ACM SIGMOD Record, 29(2): 427–438. DOI: 10.1145/335191.335437
- 37Salem, O, Guerassimov, A, Mehaoua, A, Marcus, A and Furht, B. 2014. Anomaly detection in medical wireless sensor networks using SVM and linear regression models. International Journal of E-Health and Medical Communications, 5(1): 20–45. DOI: 10.4018/ijehmc.2014010102
- 38Sarker, IH. 2021. Data science and analytics: An overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5). DOI: 10.1007/s42979-021-00765-8
- 39Schölkopf, B, Platt, JC, Shawe-Taylor, J, Smola, AJ and Williamson, RC. 2001. Estimating the support of a highdimensional distribution. Neural Computation, 13(7): 1443–1471. DOI: 10.1162/089976601750264965
- 40Shang, W, Cui, J, Song, C, Zhao, J and Zeng, P. 2018. Research on industrial control anomaly detection based on FCM and SVM. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), IEEE. DOI: 10.1109/TrustCom/BigDataSE.2018.00042
- 41Shih, S-Y, Sun, F-K and yi Lee, H. 2019. Temporal pattern attention for multivariate time series forecasting. Machine Learning, 108(8–9): 1421–1441. DOI: 10.1007/s10994-019-05815-0
- 42Shyu, M-L, Chen, S-C, Sarinnapakorn, K and Chang, L. 2003.
A novel anomaly detection scheme based on principal component classifier . Technical Report, Miami Univ Coral Gables Fl Dept of Electrical and Computer Engineering. - 43Siffer, A, Fouque, P-A, Termier, A and Largouet, C. 2017. Anomaly detection in streams with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM. DOI: 10.1145/3097983.3098144
- 44Su, Y, Zhao, Y, Niu, C, Liu, R, Sun, W and Pei, D. 2019. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM. DOI: 10.1145/3292500.3330672
- 45Tax, DM and Duin, RP. 2004. Support vector data description. Machine Learning, 54: 45–66. DOI: 10.1023/B:MACH.0000008084.60811.49
- 46Thill, M, Konen, W, Wang, H and Bäck, T. 2021. Temporal convolutional autoencoder for unsupervised anomaly detection in time series. Applied Soft Computing, 112: 107751. DOI: 10.1016/j.asoc.2021.107751
- 47Thudumu, S, Branch, P, Jin, J and Singh, JJ. 2020. A comprehensive survey of anomaly detection techniques for high dimensional big data. Journal of Big Data, 7(1). DOI: 10.1186/s40537-020-00320-x
- 48Tran, L, Mun, MY and Shahabi, C. 2020. Real-time distance-based outlier detection in data streams. Proceedings of the VLDB Endowment, 14(2): 141–153. DOI: 10.14778/3425879.3425885
- 49Tuli, S, Casale, G and Jennings, NR. 2022. TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data. Proceedings of VLDB, 15(6): 1201–1214. DOI: 10.14778/3514061.3514067
- 50Veličković, P, Cucurull, G, Casanova, A, Romero, A, Liò, P and Bengio, Y. 2018. Graph Attention Networks. International Conference on Learning Representations. Available at:
https://openreview.net/forum?id=rJXMpikCZ - 51Wang, B, Hua, Q, Zhang, H, Tan, X, Nan, Y, Chen, R and Shu, X. 2022. Research on anomaly detection and real-time reliability evaluation with the log of cloud platform. Alexandria Engineering Journal, 61(9): 7183–7193. DOI: 10.1016/j.aej.2021.12.061
- 52Wang, Y, Masoud, N and Khojandi, A. 2021. Real-time sensor anomaly detection and recovery in connected automated vehicle sensors. IEEE Transactions on Intelligent Transportation Systems, 22(3): 1411–1421. DOI: 10.1109/TITS.2020.2970295
- 53Xu, J, Wu, H, Wang, J and Long, M. 2022. Anomaly transformer: Time series anomaly detection with association discrepancy. In: International Conference on Learning Representations. Available at:
https://openreview.net/forum?id=LzQQ89U1qm - 54Yaacob, AH, Tan, IK, Chien, SF and Tan, HK. 2010. ARIMA based network anomaly detection. In: 2010 Second International Conference on Communication Software and Networks, IEEE. DOI: 10.1109/ICCSN.2010.55
- 55Yin, K, Yang, Y, Yao, C and Yang, J. 2022. Long-term prediction of network security situation through the use of the transformer-based model. IEEE Access, 10: 56145–56157. DOI: 10.1109/ACCESS.2022.3175516
- 56Yu, L, Lu, Q and Xue, Y. 2023. DTAAD: Dual TCN-attention networks for anomaly detection in multivariate time series data. arXiv:2302.10753. DOI: 10.2139/ssrn.4410420
- 57Zang, D, Liu, J and Wang, H. 2018. Markov chain-based feature extraction for anomaly detection in time series and its industrial application. In: 2018 Chinese Control And Decision Conference (CCDC), IEEE, pp. 1059–1063. DOI: 10.1109/CCDC.2018.8407286
- 58Zhang, C, Song, D, Chen, Y, Feng, X, Lumezanu, C, Cheng, W, Ni, J, Zong, B, Chen, H and Chawla, NV. 2019. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1): 1409–1416. DOI: 10.1609/aaai.v33i01.33011409
- 59Zhang, Y, Chen, Y, Wang, J and Pan, Z. 2021. Unsupervised deep anomaly detection for multi-sensor timeseries signals, IEEE Transactions on Knowledge and Data Engineering, pp. 1–1. DOI: 10.1109/TKDE.2021.3102110
- 60Zhao, H, Wang, Y, Duan, J, Huang, C, Cao, D, Tong, Y, Xu, B, Bai, J, Tong, J and Zhang, Q. 2020. Multivariate time-series anomaly detection via graph attention network. In: 2020 IEEE International Conference on Data Mining (ICDM), IEEE. DOI: 10.1109/ICDM50108.2020.00093
- 61Zong, B, Song, Q, Min, MR, Cheng, W, Lumezanu, C, Cho, D and Chen, H. 2018. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations.
