Have a personal or library account? Click to login
Cloud-Based Machine Learning Service for Astronomical Sub-Object Classification: Case Study On the First Byurakan Survey Spectra Cover

Cloud-Based Machine Learning Service for Astronomical Sub-Object Classification: Case Study On the First Byurakan Survey Spectra

Open Access
|Jan 2024

References

  1. 1Abolfathi, B, et al. 2018. The fourteenth data release of the Sloan digital sky survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment. The Astrophysical Journal Supplement Series, 235(2): 42. DOI: 10.3847/1538-4365/aa9e8a
  2. 2Alawi, AEB and Al-Roainy, AA. 2021. Deep residual networks model for star-galaxy classification. In: 2021 International Congress of Advanced Technology and Engineering (ICOTEN), pp. 14. IEEE.
  3. 3Arbelaez, P, et al. 2010. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5): 898916. DOI: 10.1109/TPAMI.2010.161
  4. 4Astsatryan, H, et al. 2021. Astronomical objects classification based on the Digitized First Byurakan Survey low-dispersion spectra. Astronomy and Computing, 34: 100442. DOI: 10.1016/j.ascom.2020.100442
  5. 5Astsatryan, H, Shoukourian, Y and Sahakyan, V. 2004. The ArmCluster Project: brief introduction. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications. PDPTA‘04, 12911295.
  6. 6Bock, S and Weiß, M. 2019. A proof of local convergence for the Adam optimizer. In: 2019 International Joint Conference on Neural Networks (IJCNN). pp. 18. IEEE. DOI: 10.1109/IJCNN.2019.8852239
  7. 7Burke, CJ, et al. 2019. Deblending and classifying astronomical sources with Mask R-CNN deep learning. Monthly Notices of the Royal Astronomical Society, 490(3): 39523965. DOI: 10.1093/mnras/stz2845
  8. 8Carneiro, T, et al. 2018. Performance analysis of Google Colaboratory as a tool for accelerating deep learning applications. IEEE Access, 6: 6167761685. DOI: 10.1109/ACCESS.2018.2874767
  9. 9Cloud-ML. 2021. Computational astrophysics library. Available at https://github.com/ArmHPC/Computational-Astrophysics.
  10. 10Cui, CZ and Zhao, YH. 2007. Worldwide R&D of virtual observatory. Proceedings of the International Astronomical Union, 3(S248): 563564. DOI: 10.1017/S1743921308020152
  11. 11Ethiraj, S and Bolla, BK. 2021. Classification of astronomical bodies by efficient layer fine-tuning of deep neural networks. In 2021 5th Conference on Information and Communication Technology (CICT). pp. 16. IEEE. DOI: 10.1109/CICT53865.2020.9672430
  12. 12González, RE, Munoz, RP and Hernández, CA. 2018. Galaxy detection and identification using deep learning and data augmentation. Astronomy and computing, 25: 103109. DOI: 10.1016/j.ascom.2018.09.004
  13. 13Hanisch, RJ, et al. 2015. The virtual astronomical observatory: re-engineering access to astronomical data. Astronomy and Computing, 11: 190209. DOI: 10.1016/j.ascom.2015.03.007
  14. 14He, K, et al. 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770778. DOI: 10.1109/CVPR.2016.90
  15. 15He, K, et al. 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 29612969. DOI: 10.1109/ICCV.2017.322
  16. 16Heymans, C, et al. 2012. CFHTLenS: the Canada–France–Hawaii telescope lensing survey. Monthly Notices of the Royal Astronomical Society, 427(1): 146166. DOI: 10.1111/j.1365-2966.2012.21952.x
  17. 17Huchra, JP. 1977. The nature of Markarian galaxies. Astrophysical Journal Supplement Series, 35: 171195. DOI: 10.1086/190474
  18. 18Jia, P, Liu, Q and Sun, Y. 2020. Detection and classification of astronomical targets with deep neural networks in wide-field small aperture telescopes. The Astronomical Journal, 159(5): 212. DOI: 10.3847/1538-3881/ab800a
  19. 19Kim, EJ and Brunner, RJ. 2016. Star-galaxy classification using deep convolutional neural networks. Monthly Notices of the Royal Astronomical Society, stw2672. DOI: 10.1093/mnras/stw2672
  20. 20Kingma, DP and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  21. 21Mickaelian, AM, et al. 2007. The digitized first Byurakan survey–DFBS. Astronomy & Astrophysics, 464(3): 11771180. DOI: 10.1051/0004-6361:20066241
  22. 22Mickaelian, AM, et al. 2016. Ten years of the Armenian Virtual Observatory. Astronomical Surveys and Big Data, 505: 16.
  23. 23Mickaelian, AM, et al. 2023. Armenian virtual observatory: status and activities. Astronomy and Computing, 42: 100689. DOI: 10.1016/j.ascom.2023.100689
  24. 24Pan, SJ and Yang, Q. 2009. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10): 13451359. DOI: 10.1109/TKDE.2009.191
  25. 25Pavlidis, T. 1980. Algorithms for shape analysis of contours and waveforms. IEEE Transactions on pattern analysis and machine intelligence, 4: 301312. DOI: 10.1109/TPAMI.1980.4767029
  26. 26Quinn, PJ, et al. 2004. The International Virtual Observatory Alliance: recent technical developments and the road ahead. In: Quinn, PJ and Bridger, A (eds.), Optimizing Scientific Return for Astronomy Through Information Technologies 5493. Glasgow: SPIE. pp. 137145. DOI: 10.1117/12.551247
  27. 27Sandler, M, et al. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 45104520. DOI: 10.1109/CVPR.2018.00474
  28. 28Tran, GS, et al. 2019. Improving accuracy of lung nodule classification using deep learning with focal loss. Journal of healthcare engineering, 2019: 5765. DOI: 10.1155/2019/5156416
  29. 29York, DG, et al. 2000. The Sloan digital sky survey: Technical summary. The Astronomical Journal, 120(3): 1579. DOI: 10.1086/301513
Language: English
Submitted on: Oct 4, 2023
Accepted on: Jan 4, 2024
Published on: Jan 30, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Hrachya Astsatryan, Stepan Babayan, Areg Mickaelian, Gor Mikayelyan, Martin Astsatryan, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.