References
- 1Abolfathi, B, et al. 2018. The fourteenth data release of the Sloan digital sky survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment. The Astrophysical Journal Supplement Series, 235(2): 42. DOI: 10.3847/1538-4365/aa9e8a
- 2Alawi, AEB and Al-Roainy, AA. 2021. Deep residual networks model for star-galaxy classification. In: 2021 International Congress of Advanced Technology and Engineering (ICOTEN), pp. 1–4.
IEEE . - 3Arbelaez, P, et al. 2010. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5): 898–916. DOI: 10.1109/TPAMI.2010.161
- 4Astsatryan, H, et al. 2021. Astronomical objects classification based on the Digitized First Byurakan Survey low-dispersion spectra. Astronomy and Computing, 34:
100442 . DOI: 10.1016/j.ascom.2020.100442 - 5Astsatryan, H, Shoukourian, Y and Sahakyan, V. 2004. The ArmCluster Project: brief introduction. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications.
PDPTA‘04 , 1291–1295. - 6Bock, S and Weiß, M. 2019. A proof of local convergence for the Adam optimizer. In: 2019 International Joint Conference on Neural Networks (IJCNN). pp. 1–8.
IEEE . DOI: 10.1109/IJCNN.2019.8852239 - 7Burke, CJ, et al. 2019. Deblending and classifying astronomical sources with Mask R-CNN deep learning. Monthly Notices of the Royal Astronomical Society, 490(3): 3952–3965. DOI: 10.1093/mnras/stz2845
- 8Carneiro, T, et al. 2018. Performance analysis of Google Colaboratory as a tool for accelerating deep learning applications. IEEE Access, 6: 61677–61685. DOI: 10.1109/ACCESS.2018.2874767
- 9Cloud-ML. 2021. Computational astrophysics library. Available at
https://github.com/ArmHPC/Computational-Astrophysics . - 10Cui, CZ and Zhao, YH. 2007. Worldwide R&D of virtual observatory. Proceedings of the International Astronomical Union, 3(S248): 563–564. DOI: 10.1017/S1743921308020152
- 11Ethiraj, S and Bolla, BK. 2021. Classification of astronomical bodies by efficient layer fine-tuning of deep neural networks. In 2021 5th Conference on Information and Communication Technology (CICT). pp. 1–6.
IEEE . DOI: 10.1109/CICT53865.2020.9672430 - 12González, RE, Munoz, RP and Hernández, CA. 2018. Galaxy detection and identification using deep learning and data augmentation. Astronomy and computing, 25: 103–109. DOI: 10.1016/j.ascom.2018.09.004
- 13Hanisch, RJ, et al. 2015. The virtual astronomical observatory: re-engineering access to astronomical data. Astronomy and Computing, 11: 190–209. DOI: 10.1016/j.ascom.2015.03.007
- 14He, K, et al. 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. DOI: 10.1109/CVPR.2016.90
- 15He, K, et al. 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969. DOI: 10.1109/ICCV.2017.322
- 16Heymans, C, et al. 2012. CFHTLenS: the Canada–France–Hawaii telescope lensing survey. Monthly Notices of the Royal Astronomical Society, 427(1): 146–166. DOI: 10.1111/j.1365-2966.2012.21952.x
- 17Huchra, JP. 1977. The nature of Markarian galaxies. Astrophysical Journal Supplement Series, 35: 171–195. DOI: 10.1086/190474
- 18Jia, P, Liu, Q and Sun, Y. 2020. Detection and classification of astronomical targets with deep neural networks in wide-field small aperture telescopes. The Astronomical Journal, 159(5): 212. DOI: 10.3847/1538-3881/ab800a
- 19Kim, EJ and Brunner, RJ. 2016. Star-galaxy classification using deep convolutional neural networks. Monthly Notices of the Royal Astronomical Society,
stw2672 . DOI: 10.1093/mnras/stw2672 - 20Kingma, DP and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- 21Mickaelian, AM, et al. 2007. The digitized first Byurakan survey–DFBS. Astronomy & Astrophysics, 464(3): 1177–1180. DOI: 10.1051/0004-6361:20066241
- 22Mickaelian, AM, et al. 2016. Ten years of the Armenian Virtual Observatory. Astronomical Surveys and Big Data, 505: 16.
- 23Mickaelian, AM, et al. 2023. Armenian virtual observatory: status and activities. Astronomy and Computing, 42:
100689 . DOI: 10.1016/j.ascom.2023.100689 - 24Pan, SJ and Yang, Q. 2009. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10): 1345–1359. DOI: 10.1109/TKDE.2009.191
- 25Pavlidis, T. 1980. Algorithms for shape analysis of contours and waveforms. IEEE Transactions on pattern analysis and machine intelligence, 4: 301–312. DOI: 10.1109/TPAMI.1980.4767029
- 26Quinn, PJ, et al. 2004.
The International Virtual Observatory Alliance: recent technical developments and the road ahead . In: Quinn, PJ and Bridger, A (eds.), Optimizing Scientific Return for Astronomy Through Information Technologies 5493. Glasgow: SPIE. pp. 137–145. DOI: 10.1117/12.551247 - 27Sandler, M, et al. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4510–4520. DOI: 10.1109/CVPR.2018.00474
- 28Tran, GS, et al. 2019. Improving accuracy of lung nodule classification using deep learning with focal loss. Journal of healthcare engineering, 2019: 57–65. DOI: 10.1155/2019/5156416
- 29York, DG, et al. 2000. The Sloan digital sky survey: Technical summary. The Astronomical Journal, 120(3):
1579 . DOI: 10.1086/301513
