Have a personal or library account? Click to login
Cloud-Based Machine Learning Service for Astronomical Sub-Object Classification: Case Study On the First Byurakan Survey Spectra Cover

Cloud-Based Machine Learning Service for Astronomical Sub-Object Classification: Case Study On the First Byurakan Survey Spectra

Open Access
|Jan 2024

Figures & Tables

dsj-23-1638-g1.png
Figure 1

Examples of the subtypes of objects from the three most common object groups in the DFBS.

dsj-23-1638-g2.jpg
Figure 2

The workflow chart: (a) four-step image processing, (b) the proposed CNN architecture.

dsj-23-1638-g3.jpg
Figure 3

The flowchart of the cloud-based service.

Table 1

Comparison of classification reports for two frameworks proposed by the authors on the sub-objects’ dataset. Support denotes the number of samples in the corresponding class (train + test), blue color denotes the better score.

SUPPORTPRECISIONRECALLF1-SCORE
C-H626 + 1170.89 / 0.930.91 / 0.970.90 / 0.95
Mrk SB664 + 1320.94 / 0.950.89 / 0.950.91 / 0.95
sdB817 + 1560.94 / 0.980.96 / 0.960.95 / 0.97
Accuracy2107 + 4050.93 / 0.96
Macro avg2107 + 4050.92 / 0.960.92 / 0.960.92 / 0.96
Weighted avg2107 + 4050.93 / 0.960.93 / 0.960.93 / 0.96
Table 2

Comparison of classification reports for two frameworks proposed by the authors on the group classification dataset.

SUPPORTPRECISIONRECALLF1-SCORE
C362 + 630.82 / 0.870.89 / 0.870.85 / 0.87
M169 + 290.70 / 0.740.48 / 0.690.57 / 0.71
Mrk333 + 580.91 / 0.940.88 / 1.000.89 / 0.97
PN13 + 21.00 / 1.001.00 / 1.001.00 / 1.00
sd601 + 1060.93 / 1.000.98 / 0.980.95 / 0.99
Accuracy1478 + 2580.88 / 0.93
Macro avg1478 + 2580.87 / 0.910.85 / 0.910.86 / 0.91
Weighted avg1478 + 2580.87 / 0.930.88 / 0.930.87 / 0.93
dsj-23-1638-g4.png
Figure 4

The accuracy of training and testing sets for the sub-object classification dataset.

dsj-23-1638-g5.png
Figure 5

The accuracy of training and testing sets for the group classification dataset.

Table 3

The model’s inference results on one million astronomical objects.

THRESHOLDC-HMrk SBsdBOTHER
0.95105571023715084964123
0.9238231904421691935443
0.85386332916328265903940
0.8560264060935231868135
Table 4

The model’s inference results on four million astronomical objects.

THRESHOLDC-HMrk SBsdBOTHER
0.953735548695572783856673
0.98537989872821833742567
0.851399251347191067253618632
0.82043821849181332093477492
Language: English
Submitted on: Oct 4, 2023
Accepted on: Jan 4, 2024
Published on: Jan 30, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Hrachya Astsatryan, Stepan Babayan, Areg Mickaelian, Gor Mikayelyan, Martin Astsatryan, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.