Have a personal or library account? Click to login
A Notion of Feature Importance by Decorrelation and Detection of Trends by Random Forest Regression Cover

A Notion of Feature Importance by Decorrelation and Detection of Trends by Random Forest Regression

Open Access
|Nov 2023

References

  1. 1Beraha, M, Metelli, AM, Papini, M, Tirinzoni, A and Restelli, M. 2019. Feature selection via mutual information: New theoretical insights. In: 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, pp. 19. DOI: 10.1109/IJCNN.2019.8852410
  2. 2Boulesteix, AL, Janitza, S, Kruppa, J and König, IR. 2012. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6): 493507. DOI: 10.1002/widm.1072
  3. 3Breiman, L. 2001. Random Forests. Machine Learning, 45(1): 532. DOI: 10.1023/A:1010933404324
  4. 4Chen, RC, Dewi, C, Huang, SW and Caraka, RE. 2020. Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1): 52. DOI: 10.1186/s40537-020-00327-4
  5. 5Chicco, D and Jurman, G. 2021. An ensemble learning approach for enhanced classification of patients with hepatitis and cirrhosis. IEEE Access, 9: 2448524498. DOI: 10.1109/ACCESS.2021.3057196
  6. 6Dezfouli, A, Ashtiani, H, Ghattas, O, Nock, R, Dayan, P and Ong, CS. 2019. Disentangled behavioural representations. Advances in Neural Information Processing Systems (NeurIPS), 32. DOI: 10.1101/658252
  7. 7Fraser, DAS. 1965. On information in statistics. The Annals of Mathematical Statistics, 36(3): 890896. DOI: 10.1214/aoms/1177700061
  8. 8Gübert, J, Hahn-Klimroth, M and Dierkes, PW. 2023. A large-scale study on the nocturnal behavior of African ungulates in zoos and its influencing factors. Frontiers in Ethology, 2: 1219977. DOI: 10.3389/fetho.2023.1219977
  9. 9Guyon, I, Weston, J, Barnhill, S and Vapnik, V. 2002. Gene selection for cancer classification using Support Vector Machines. Machine Learning, 46(1–3): 389422. DOI: 10.1023/A:1012487302797
  10. 10He, K, Zhang, X, Ren, S and Sun, J. 2016. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770778. DOI: 10.1109/CVPR.2016.90
  11. 11Janzing, D, Minorics, L and Bloebaum, P. 2020. Feature relevance quantification in explainable ai: A causal problem. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. In: Proceedings of Machine Learning Research (PMLR), 108: 29072916. Available at https://proceedings.mlr.press/v108/janzing20a.html.
  12. 12Louppe, G. 2014. Understanding random forests: From theory to practice. arXiv:1407.7502.
  13. 13Lundberg, SM and Lee, SI. 2017. A unified approach to interpreting model predictions. In: 31st International Conference on Neural Information Processing Systems (NeurIPS), pp. 47684777.
  14. 14Nugent, C. 2017. California housing prices. version 1. Available at https://www.kaggle.com/datasets/camnugent/california-housing-prices [accessed 24 February 2023].
  15. 15Parveen, AN, Inbarani, HH and Kumar, ENS. 2012. Performance analysis of unsupervised feature selection methods. In: 2012 International Conference on Computing, Communication and Applications, Dindigul, India, pp. 17. DOI: 10.1109/ICCCA.2012.6179181
  16. 16Pyae, A. 2019. Fish market dataset. version 2. Available at: https://www.kaggle.com/datasets/aungpyaeap/fish-market [accessed: 24 February 2023].
  17. 17Saarela, M and Jauhiainen, S. 2021. Comparison of feature importance measures as explanations for classification models. SN Applied Sciences, 3(2). DOI: 10.1007/s42452-021-04148-9
  18. 18Shapley, LS. 1953. 17. A Value for n-Person Games. In: Contributions to the Theory of Games (AM-28), Volume II. Princeton: Princeton University Press, pp. 307318. DOI: 10.1515/9781400881970-018
  19. 19Sundararajan, M and Najmi, A. 2020. The many shapley values for model explanation. Proceedings of the 37th International Conference on Machine Learning. In: Proceedings of Machine Learning Research, 119: 92699278. Available at https://proceedings.mlr.press/v119/sundararajan20b.html
  20. 20Zhang, K and Chan, LW. 2006. Dimension reduction as a deflation method in ICA. IEEE Signal Processing Letters, 13(1): 4548. DOI: 10.1109/LSP.2005.860541
Language: English
Submitted on: May 26, 2023
Accepted on: Sep 27, 2023
Published on: Nov 3, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Yannick Gerstorfer, Max Hahn-Klimroth, Lena Krieg, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.