References
- Afgan, E, Baker, D, Batut, B, Van den Beek, M, Bouvier, D, Čech, M, Chilton, J, Clements, D, Coraor, N, Grüning, BA, et al. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic acids research, 46(W1): W537–W544. DOI: 10.1093/nar/gky379
- Deelman, E, Gannon, D, Shields, M and Taylor, I. 2009. Workflows and e-Science: An overview of workflow system features and capabilities. Future Generation Computer Systems, 25(5): 528–540. DOI: 10.1016/j.future.2008.06.012
- Dehm, G, Jaya, BN, Raghavan, R and Kirchlechner, C. 2018. Overview on micro-and nanomechanical testing: New insights in interface plasticity and fracture at small length scales. Acta Materialia, 142: 248–282. DOI: 10.1016/j.actamat.2017.06.019
- Draxl, C and Scheffler, M. 2020. Big data-driven materials science and its FAIR data infrastructure. In: Handbook of Materials Modeling: Methods: Theory and Modeling, pp. 49–73. DOI: 10.1007/978-3-319-44677-6_104
- Griem, L, Zschumme, P, Laqua, M, Brandt, N, Schoof, E, Altschuh, P and Selzer, M. 2022. KadiStudio: FAIR Modelling of Scientific Research Processes. Data Science Journal, 21(1): 1–17. DOI: 10.5334/dsj-2022-016
- Jain, A, Ong, SP, Chen, W, Medasani, B, Qu, X, Kocher, M, Brafman, M, Petretto, G, Rignanese, G, Hautier, G, et al. 2015. FireWorks: A dynamic workflow system designed for high-throughput applications. Concurrency and Computation: Practice and Experience, 27(17): 5037–5059. DOI: 10.1002/cpe.3505
- Kadi4Mat Team and Contributors. 2022a. IAM-CMS/kadi-apy: Kadi4Mat API Library. Version 0.20.0. DOI: 10.5281/zenodo.5971821
- Kadi4Mat Team and Contributors. 2022b. IAM-CMS/workflow-nodes. Version 0.13.0. DOI: 10.5281/zenodo.5971840
- Kadi4Mat Team and Contributors. 2022c. IAM-CMS/xmlhelpy. Version 0.9.2. DOI: 10.5281/zenodo.5971732
- Kluyver, T, Ragan-Kelley, B, Pérez, F, Granger, B, Bussonnier, M, Frederic, J, Kelley, K, Hamrick, J, Grout, J, Corlay, S, Ivanov, P, Avila, D, Abdalla, S, Willing, C and Jupyter Development Team. 2016.
Jupyter Notebooks? a publishing format for reproducible computational workflows . In: Loizides, F and Schmidt, B (eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press. pp. 87–90. DOI: 10.3233/978-1-61499-649-1-87 - Liu, J, Pacitti, E, Valduriez, P and Mattoso, M. 2015. A survey of data-intensive scientific workflow management. Journal of Grid Computing, 13: 457–493. DOI: 10.1007/s10723-015-9329-8
- Ludäscher, B, Altintas, I, Bowers, S, Cummings, J, Critchlow, T, Deelman, E, De Roure, D, Freire, J, Goble, CA and Jones, MB, et al. 2009. Scientific Process Automation and Workflow Management. Scientific Data Management, 10(3): 476–508. DOI: 10.1201/9781420069815-c13
- Malyar, NV, Springer, H, Wichert, J, Dehm, G, Kirchlechner, C. 2019. Synthesis and mechanical testing of grain boundaries at the micro and sub-micro scale. Materials Testing, 61(1): 5–18. DOI: 10.3139/120.111286
- Pinaev, et al. 2017. QtNodes. Node Editor.
https://github.com/paceholder/nodeeditor . - Pizzi, G, Cepellotti, A, Sabatini, R, Marzari, N and Kozinsky, B. 2016. “AiiDA: automated interactive infrastructure and database for computational science”. Computational Materials Science, 111: 218–230. DOI: 10.1016/j.commatsci.2015.09.013
- Uchic, MD, Dimiduk, DM, Florando, JN and Nix, WD. 2004. Sample dimensions influence strength and crystal plasticity. In: Science, 305(5686): pp. 986–989. DOI: 10.1126/science.1098993
