Have a personal or library account? Click to login
From Meaningful Data Science to Impactful Decisions: The Importance of Being Causally Prescriptive Cover

From Meaningful Data Science to Impactful Decisions: The Importance of Being Causally Prescriptive

Open Access
|Apr 2023

References

  1. Ali, SAM, Sorooshian, S and Kie, CJ. 2016. Modelling for causal interrelationships by DEMATEL. Contemporary Engineering Sciences, 9(9): 403412. DOI: 10.12988/ces.2016.6214
  2. Angrist, JD and Pischke, J-S. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ: Princeton University Press. DOI: 10.1515/9781400829828
  3. Antunes, CH, Alves, MJ and Climaco, J. 2016. Multiobjective Linear and Integer Programming. Cham, Switzerland: Springer. DOI: 10.1007/978-3-319-28746-1_6
  4. Athey, S and Imbens, GW. 2015. Machine learning methods for estimating heterogeneous causal effects. Working Paper No. 3350, Stanford Graduate School of Business.
  5. Attri, R, Dev, N and Sharma, V. 2013. Interpretive structural modelling (ISM) approach: An overview. Research Journal of Management Sciences, 2(2): 38.
  6. Belongia, MT and Ireland, PN. 2015. Interest rates and money in the measurement of monetary policy. Journal of Business & Economic Statistics, 33(2): 255269. DOI: 10.1080/07350015.2014.946132
  7. Ben-Tal, A, El Ghaoui, L and Nemirovski, A. 2009. Robust optimization (Vol. 28). Princeton university press.
  8. Bertsimas, D, Delarue, A, Eger, W, Hanlon, J and Martin, S. 2020. Bus routing optimization helps Boston public schools design better policies. INFORMS Journal on Applied Analytics, 50(1): 3749. DOI: 10.1287/inte.2019.1015
  9. Bertsimas, D and Kallus, N. 2020. From predictive to prescriptive analytics. Management Science, 66(3): 10251044. Available at http://www.p2-analytics.com/papers/PredToPresc.pdf. DOI: 10.1287/mnsc.2018.3253
  10. Bertsimas, D and Tsitsiklis, JN. 1997. Introduction to Linear Optimization. Belmont, MA: Athena Scientific.
  11. Bobriakov, I. 2019. Data science vs. decision science. Medium, April 16, 2019. Available at https://medium.com/@ibobriakov/data-science-vs-decision-science-infographic-7ad6e16698d
  12. Bojinov, I, Chen, A and Liu, M. 2020. The importance of being causal. Harvard Data Science Review, 2(3). https://hdsr.mitpress.mit.edu/pub/wjhth9tr/release/1. DOI: 10.1162/99608f92.3b87b6b0
  13. Carpenter, SM, Menictas, M, Nahum-Shani, I, Wetter, DW and Murphy, SA. 2020. Developments in mobile health just-in-time adaptive interventions for addiction science. Current Addiction Reports, 7: 280290. DOI: 10.1007/s40429-020-00322-y
  14. Chauhan, A, Singh, A and Jharkharia, S. 2018. An interpretive structural modeling (ISM) and decision-making trial and evaluation laboratory (DEMATEL) method approach for the analysis of barriers of waste recycling in India. Journal of the Air & Waste Management Association, 68(2): 100110. DOI: 10.1080/10962247.2016.1249441
  15. Cornuejols, G and Tutuncu, R. 2007. Optimization Methods in Finance. New York: Cambridge University Press.
  16. Daskin, MS. 2010. Service Science. Hoboken, NJ: Wiley. DOI: 10.1002/9780470877876
  17. Davenport, TH. 2013. Analytics 3.0. Harvard Business Review, 91(12): 6472.
  18. de Langhe, B and Puntoni, S. 2021. What leaders get wrong with data-driven decisions. MIT Sloan Management Review: MIT’s Journal of Management Research and Ideas, 62(3): 1013. Available at http://hdl.handle.net/1765/134544
  19. Delen, D. 2020. Prescriptive Analytics: The Final Frontier for Evidence-Based Management and Optimal Decision Making. New York: Pearson.
  20. Dominici, F, Bargagli-Stoffi, FJ and Mealli, F. 2021. From controlled to undisciplined data: Estimating causal effects in the era of data science using a potential outcome framework. Harvard Data Science Review. DOI: 10.1162/99608f92.8102afed
  21. Dunning, T. 2016. Natural Experiments in the Social Sciences: A Design-Based Approach. 6th printing. Cambridge, UK: Cambridge University Press.
  22. Fabozzi, FJ, Kolm, PN, Pachamanova, DA and Focardi, SM. 2007. Robust Portfolio Optimization and Management. Hoboken, NJ: Wiley. DOI: 10.1002/9780470404324.hof003068
  23. Feillet, D. 2010. A tutorial on column generation and branch-and-price for vehicle routing problems. 4or, 8(4): 407424. DOI: 10.1007/s10288-010-0130-z
  24. Frazzetto, D, Nielsen, TD, Pedersen, TB and Siksnys, L. 2019. Prescriptive analytics: A survey of emerging trends and technologies. VLDB Journal, 28(4): 575595. DOI: 10.1007/s00778-019-00539-y
  25. Freedman, DA. 2009. Statistical Models: Theory and Practice. Rev. ed. New York: Cambridge University Press. DOI: 10.1017/CBO9780511815867
  26. Gai, Y and Pachamanova, D. 2019. Impact of the Medicare Hospital Readmissions Reduction Program on Vulnerable Populations. BMC Health Services Research, 19: 837. DOI: 10.1186/s12913-019-4645-5
  27. Gelman, A, Carlin, JB, Stern, HS and Rubin, DB. 2013. Bayesian Data Analysis. 3rd ed. Boca Raton, FL: CRC Press. DOI: 10.1201/b16018
  28. Gelman, A, Hill, J and Vehtari, A. 2021. Regression and Other Stories. New York: Cambridge University Press. DOI: 10.1017/9781139161879
  29. Glennerster, R and Takavarasha, K. 2013. Running Randomized Evaluations: A Practical Guide. Princeton, NJ: Princeton University Press. DOI: 10.2307/j.ctt4cgd52
  30. Hagmayer, Y and Fernback, PM. 2017. Causality in decision-making. In: Waldmann, MR, The Oxford Handbook of Causal Reasoning, 495514. New York: Oxford University. DOI: 10.1093/oxfordhb/9780199399550.013.27
  31. Hagmayer, Y and Sloman, SA. 2005. Causal models of decision making: Choice as intervention. In: Proceedings of the Twenty-Seventh Annual Conference of the Cognitive Science Society, Stresa, Italy.
  32. Hamburg, MA and Collins, FS. 2010. The path to personalized medicine. New England Journal of Medicine, 363(4): 301304. DOI: 10.1056/NEJMp1006304
  33. Hastie, T, Tibshirani, R and Friedman, J. 2009. The Elements of Statistical Learning. 2nd ed. New York: Springer. DOI: 10.1007/978-0-387-84858-7
  34. Haughton, D, Haughton, J and Lo, VSY. 2023, expected. Cause-and-Effect Business Analytics. New York: CRC/Chapman & Hall.
  35. Hayes, AF. 2013. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York: Guilford Press.
  36. Hernan, MA and Robins, JM. 2020. Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC.
  37. Iacobucci, D. 2008. Mediation Analysis. Thousand Oaks, CA: SAGE Publications.
  38. Illari, P and Russo, F. 2014. Causality: Philosophical Theory Meets Scientific Practice. New York: Oxford University Press.
  39. Imbens, G and Rubin, D. 2015. Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. New York: Cambridge University Press. DOI: 10.1017/CBO9781139025751
  40. Joyce, JM. 2008. The Foundations of Causal Decision Theory. New York: Cambridge University Press.
  41. Kaliszewski, I, Miroforidis, J and Podkopaev, D. 2016. Multiple Criteria Decision Making by Multiobjective Optimization: A Toolbox. Cham, Switzerland: Springer. DOI: 10.1007/978-3-319-32756-3
  42. Kane, K, Lo, VSY, and Zheng, J. 2014. Mining for the truly responsive customers and prospects using true-lift modeling: Comparison of new and existing methods. Journal of Marketing Analytics, 2(4): 218238. DOI: 10.1057/jma.2014.18
  43. Keeney, RL. 1996. Value-Focused Thinking: A Path of Creative Decisionmaking. Cambridge, MA: Harvard University Press. DOI: 10.2307/j.ctv322v4g7
  44. Kiley, MT and Roberts, JM. 2017. Monetary policy in a low interest rate world. Finance and Economics Discussion Series 2017-080. Washington, DC: Board of Governors of the Federal Reserve System. DOI: 10.17016/FEDS.2017.080
  45. Kochenderfer, MJ. 2015. Decision Making under Uncertainty. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/10187.001.0001
  46. Koller, D and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA: MIT Press.
  47. Koole, G. 2013. Call Center Optimization. Amsterdam: MG Books.
  48. LaRiviere, J, McAfee, P, Rao, J, Narayanan, VK and Sun, W. 2016. Where predictive analytics is having the biggest impact. Harvard Business Review, May 25, 2016. https://hbr.org/2016/05/where-predictive-analytics-is-having-the-biggest-impact
  49. Leigh, A. 2018. Randomistas: How Radical Researchers Are Changing Our World. New Haven, CT: Yale University Press. DOI: 10.12987/9780300240115
  50. Lo, VSY. 2002. The true lift model—A novel data mining approach to response modeling in database marketing.” SIGKDD Explorations, 4(2): 7886. https://www.researchgate.net/publication/220520042_The_True_Lift_Model_-_A_Novel_Data_Mining_Approach_to_Response_Modeling_in_Database_Marketing. DOI: 10.1145/772862.772872
  51. Lo, VSY. 2008. New opportunities in marketing data mining. In: Wang, J (ed.), Encyclopedia of Data Warehousing and Mining, 2nd ed. Hershey, PA: Idea Group Publishing. DOI: 10.4018/978-1-59904-951-9.ch177
  52. Lo, VSY. 2020. Top 10 essential data science topics to real-world application from the industry perspectives. Harvard Data Science Review, 2(3) (Summer). https://hdsr.mitpress.mit.edu/pub/diub13so/release/3
  53. Lo, VSY and Pachamanova, D. 2015. A practical approach to treatment optimization while accounting for estimation risk. Journal of Marketing Analytics, 3(2): 7995. DOI: 10.1057/jma.2015.5
  54. Markowitz, H. 1952. Portfolio selection. Journal of Finance 7(1): 7791. DOI: 10.1111/j.1540-6261.1952.tb01525.x
  55. Mills, TC and Markellos, RN. 2008. The Econometric Modelling of Financial Time Series. 3rd ed. Cambridge, UK: Cambridge University Press. DOI: 10.1017/CBO9780511817380
  56. Morgan, SL and Winship, C. 2015. Counterfactuals and Causal Inference. 2nd ed. New York: Cambridge University Press. DOI: 10.1017/CBO9781107587991
  57. Pachamanova, D, Lo, VSY and Gulpinar, N. 2020. Uncertainty representation and risk management in direct segmented market. Journal of Marketing Management, 36(1–2): 149175. DOI: 10.1080/0267257X.2019.1707265
  58. Papadimitriou, CH and Steiglitz, K. 1998. Combinational Optimization: Algorithms and Complexity. Mineola, NY: Dover.
  59. Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge University Press.
  60. Pearl, J. 2012. The do-calculus revisited. In: De Freitas, N and Murphy, K (eds.), Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, 411. Corvallis, OR: AUAI Press. https://ftp.cs.ucla.edu/pub/stat_ser/r402.pdf
  61. Pearl, J, Glymour, M and Jewell, NP. 2016. Causal Inference in Statistics: A Primer. Hoboken, NJ: Wiley.
  62. Pearl, J and MacKenzie, D. 2018. The Book of Why: The New Science of Cause and Effect. New York: Basic Books.
  63. Pessach, D, Singer, G, Avrahami, D, Chalutz Ben-Gal, H, Shmueli, E and Ben-Gal, I. 2020. Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134: 113290. DOI: 10.1016/j.dss.2020.113290
  64. Peters, J, Janzing, D and Scholkopf, B. 2017. Elements of Causal Inference: Foundations and Learning Algorithms. MIT Press: Cambridge, MA.
  65. Pinedo, ML. 2009. Planning and Scheduling in Manufacturing and Services. 2nd ed. New York: Springer. DOI: 10.1007/978-1-4419-0910-7
  66. Poornima, S and Pushpalatha, M. 2020. A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks, 1: 7684. DOI: 10.1016/j.ijin.2020.07.001
  67. Powell, WB. 2011. Approximate Dynamic Programming. 2nd ed. Hoboken, NJ: Wiley. DOI: 10.1002/9780470400531.eorms0043
  68. Reichardt, CS. 2019. Quasi-Experimentation: A Guide to Design and Analysis. New York: Guilford Press.
  69. Rose, R. 2016. Defining analytics: A conceptual framework. ORMS Today, 43(3). DOI: 10.1287/orms.2016.03.12
  70. Rosenbaum, PR. 2002. Observational Studies. 2nd ed. New York: Springer. DOI: 10.1007/978-1-4757-3692-2
  71. Rosenbaum, PR. 2010. Design of Observational Studies. New York: Springer. DOI: 10.1007/978-1-4419-1213-8
  72. Rosenbaum, PR. 2019. Observation and Experiment: An Introduction to Causal Inference. Cambridge, MA: Harvard University Press.
  73. Routing Challenge. 2021. https://routingchallenge.mit.edu/about-the-challenge/
  74. Rubin, DB. 2006. Matched Sampling for Causal Effects. New York: Cambridge University Press. DOI: 10.1017/CBO9780511810725
  75. Salsburg, D. 2001. The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. New York: Holt Paperbacks.
  76. Scutari, M and Denis, J-B. 2015. Bayesian Networks: With Examples in R. Boca Raton, FL: Chapman & Hall/CRC Press.
  77. Shapiro, JF. 2007. Modeling the Supply Chain. 2nd ed. Belmont, MA: Thomson Brooks/Cole.
  78. Siegel, E. 2011. Upilft modeling: Predictive analytics can’t optimize marketing decisions without it. Prediction Impact white paper sponsored by Pitney Bowes Business Insight.
  79. Siegel, E. 2013. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Hoboken, NJ: Wiley.
  80. Sloman, SA. 2005. Causal Models: How People Think about the World and Its Alternatives. New York: Oxford University Press. DOI: 10.1093/acprof:oso/9780195183115.001.0001
  81. Sloman, SA and Hagmayer, Y. 2006. The causal psycho-logic of choice. TRENDS in Cognitive Sciences, 10(9): 407412. DOI: 10.1016/j.tics.2006.07.001
  82. Sorooshian, S, Tavana, M and Ribeiro-Navarrete, S. 2023. From classical interpretive structural modeling to total interpretive structural modeling and beyond: A half-century of business research. Journal of Business Research, 157: 113642. DOI: 10.1016/j.jbusres.2022.113642
  83. Spirtes, P, Glymour, C and Scheines, R. 2000. Causation, Prediction, and Search. 2nd ed. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/1754.001.0001
  84. Sugiyama, M. 2015. Statistical Reinforcement Learning: Modern Machine Learning Approaches. Boca Raton, FL: CRC Press. DOI: 10.1201/b18188
  85. Sutton, RS and Barto, AG. 2018. Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA: MIT Press.
  86. Theodoridis, S. 2015. Machine Learning: A Bayesian and Optimization Perspective. London: Academic Press. DOI: 10.1016/B978-0-12-801522-3.00012-4
  87. Thomke, SH. 2020. Experimentation Works: The Surprising Power of Business Experiments. Boston, MA: Harvard Business Review Press.
  88. Vanderweele, TJ. 2015. Explanation in Causal Inference: Methods for Mediation and Interaction. New York: Oxford University Press. DOI: 10.1093/ije/dyw277
  89. Wallace, SW and Ziemba, WT. (eds.) 2005. Applications of Stochastic Programming. Philadelphia, PA: Society for Industrial and Applied Mathematics and the Mathematical Programming Society.
  90. Williams, HP. 2003. Model Building in Mathematical Programming. 4th ed. West Sussex, UK: Wiley.
  91. Yong, FH. 2015. Quantitative methods for stratified medicine. PhD dissertation, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University.
Language: English
Submitted on: Feb 18, 2022
|
Accepted on: Mar 6, 2023
|
Published on: Apr 25, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Victor S. Y. Lo, Dessislava A. Pachamanova, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.