References
- Ash, J. 2012. Technology, technicity, and emerging practices of temporal sensitivity in videogames. Environment and Planning A: Economy and Space, 44(1): 187–203. DOI: 10.1068/a44171
- Bol, T, de Vaan, M and van de Rijt, A. 2018. The Matthew effect in science funding. Proceedings of the National Academy of Sciences, 115(19): 4887–4890. DOI: 10.1073/pnas.1719557115
- Borgman, CL. 2015. Big Data, Little Data, No Data. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/9963.001.0001
- Borgman, CL. 2018. Open data, grey data, and stewardship: Universities at the privacy frontier. Berkeley Technology Law Journal, 33(2): 365–412.
- Brehm, W. 2022. Podcasting and education: Reflections on the case of FreshEd. ECNU Review of Education, 5(4): 784–791. DOI: 10.1177/20965311221094860
- Breu, C and Leo, JRD. 2022. Infrastructuralism. symplokē, 31(1–2). Available at:
https://www.symploke.org/infrastructuralism/ [Last accessed 15 February 2023]. - Calzada, I and Almirall, E. 2020. Data ecosystems for protecting European citizens’ digital rights. Transforming Government: People, Process and Policy, 14(2): 133–147. DOI: 10.1108/TG-03-2020-0047
- Cao, L. 2017. Data science: A comprehensive overview. ACM Computing Surveys, 50(3), Article 43: 1–42. DOI: 10.1145/3076253
- Carroll, SR, Garba, I, Oscar, L, et al. 2020. The CARE principles for Indigenous data governance. Data Science Journal, 19(1): 43. DOI: 10.5334/dsj-2020-043
- Carroll, SR, Rodriguez-Lonebear, D and Martinez, A. 2019. Indigenous data governance: Strategies from United States Native nations. Data Science Journal, 18(1): 31. DOI: 10.5334/dsj-2019-031
- CODATA. 2021. Global Open Science Cloud. Available at:
https://codata.org/initiatives/decadal-programme2/global-open-science-cloud/ [Last accessed 6 December 2022]. - CODATA, CODATA IDPC, CODATA and CODATA China High-level International Meeting on Open Research Data Policy and Practice, et al. 2019. The Beijing Declaration on Research Data. Zenodo. DOI: 10.5281/zenodo.3552330
- Combes, F. 2021. Science with SKA. arXiv:2107.03915 [astro-ph.CO]. SF2A 2021: 238–242. DOI: 10.48550/arXiv.2107.03915
- CSTCloud. 2021. Global Open Science Cloud. Available at:
https://www.cstcloud.net/gosc.htm [Last accessed 6 December 2022]. - Dhar, V. 2013. Data science and prediction. Communications of the ACM, 56(12): 64–73. DOI: 10.1145/2500499
- Ducassé, P and Lee, D. 2014. Technics and the philosopher. Diacritics, 42(1): 25–44. DOI: 10.1353/dia.2014.0002
- Floridi, L and Taddeo, M. 2016. What is data ethics? Philosophical Transactions of the Royal Society A, 374(2083): 20160360. DOI: 10.1098/rsta.2016.0360
- Gallope, M. 2011. Technicity, consciousness, and musical objects. In: Clarke, D and Clarke, E, Music and Consciousness: Philosophical, Psychological, and Cultural Perspectives, 47–64. 1st ed. New York: Oxford University Press. DOI: 10.1093/acprof:oso/9780199553792.003.0030
- George, A and Walsh, T. 2022. Artificial intelligence is breaking patent law. Nature, 605: 616–618. DOI: 10.1038/d41586-022-01391-x
- Gummer, ES and Mandinach, EB. 2015. Building a conceptual framework for data literacy. Teachers College Record, 117(4): 1–22. DOI: 10.1177/016146811511700401
- Gundersen, LC. 2017.
Scientific integrity and ethical considerations for the research data life cycle . In: Gunderson, LC, Scientific Integrity and Ethics in the Geosciences, 133–153. Washington, DC: American Geophysical Union and John Wiley and Sons. DOI: 10.1002/9781119067825.ch9 - Guo, H, Chen, F, Sun, Z, Liu, J and Liang, D. 2021. Big Earth Data: A practice of sustainability science to achieve the Sustainable Development Goals. Science Bulletin (Beijing), 66(11): 1050–1053. DOI: 10.1016/j.scib.2021.01.012
- Gurumurthy, A, Chami, N and Bharthur, D. 2016. Democratic accountability in the digital age. IT for Change. Available at:
https://www.ids.ac.uk/publications/democratic-accountability-in-the-digital-age/ [Last accessed 14 February 2023]. DOI: 10.2139/ssrn.3875297 - International Science Council (ISC). 2021. Science and Society in Transition: ISC Action Plan 2022–2024. Available at:
https://council.science/actionplan/ [Last accessed 3 December 2022]. - Kempeneer, S. 2021. A big data state of mind: Epistemological challenges to accountability and transparency in data-driven regulation. Government Information Quarterly, 38(3):
101578 . DOI: 10.1016/j.giq.2021.101578 - Lin, D, Crabtree, J, Dillo, I, et al. 2020. The TRUST principles for digital repositories. Scientific Data, 7(1): 144. DOI: 10.1038/s41597-020-0486-7
- Luan, H, Geczy, P, Lai, H, et al. 2020. Challenges and future directions of big data and artificial intelligence in education. Frontiers in Psychology, 11:
580820 . DOI: 10.3389/fpsyg.2020.580820 - Malgonde, O and Bhattacherjee, A. 2014. Innovating using big data: A social capital perspective. Twentieth Americas Conference on Information Systems, Savannah, Georgia.
- Mayer-Schönberger, V and Cukier, K. 2013. Big Data: A Revolution That Will Transform How We Live, Work and Think. Boston, MA: Houghton Mifflin Harcourt.
- Mayernik, MS, Hart, DL, Maull, KE, et al. 2017. Assessing and tracing the outcomes and impact of research infrastructures. Journal of the Association for Information Science and Technology, 68: 1341–1359. DOI: 10.1002/asi.23721
- Mejias, UA and Couldry, N. 2019. Datafication. Internet Policy Review, 8(4). DOI: 10.14763/2019.4.1428
- Merton, RK. 1968. The Matthew effect in science. Science, 159(3810): 56–63. DOI: 10.1126/science.159.3810.56
- Merton, RK. 1988. The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. isis, 79(4): 606–623. DOI: 10.1086/354848
- National Academies of Sciences, Engineering, and Medicine (NASEM), Division of Behavioral and Social Sciences and Education, Board on Science Education, et al. 2018. Data Science for Undergraduates: Opportunities and Options. Washington, DC: National Academies Press. Available at:
https://www.ncbi.nlm.nih.gov/books/NBK532765/ [Last accessed 13 February 2023]. - Provost, F and Fawcett, T. 2013. Data science and its relationship to big data and data-driven decision making. Big Data, 1(1): 51–59. DOI: 10.1089/big.2013.1508
- Science International. 2015. Open Data in a Big Data World. Paris: International Council for Science (ICSU), International Social Science Council (ISSC), the World Academy of Sciences (TWAS), InterAcademy Partnership (IAP).
- Shanks, G and Corbitt, B. 1999. Understanding data quality: Social and cultural aspects. In: Proceedings of the 10th Australasian Conference on Information Systems, 785. New Zealand:
Victoria University of Wellington . - Silver, D, Schrittwieser, J, Simonyan, K, et al. 2017. Mastering the game of Go without human knowledge. Nature, 550(7676): 354–359. DOI: 10.1038/nature24270
- Taylor, L. 2017. What is data justice? The case for connecting digital rights and freedoms globally. Big Data & Society, 4(2): 2053951717736335. DOI: 10.1177/2053951717736335
- UN Sustainable Development Group. 2022. Operationalizing Leaving No One Behind. Available at:
https://unsdg.un.org/resources/leaving-no-one-behind-unsdg-operational-guide-un-country-teams [Last accessed 12 February 2023]. - UNESCO. 2021. UNESCO Recommendation on Open Science. Available at:
https://en.unesco.org/science-sustainable-future/open-science/recommendation [Last accessed 5 December 2022]. - van Dis, EAM, Bollen, J, Zuidema, W, et al. 2023. ChatGPT: Five priorities for research. Nature, 614(7947): 224–226. DOI: 10.1038/d41586-023-00288-7
- Van Es, K and Schäfer, MT. 2017. The Datafied Society: Studying Culture through Data. Amsterdam, Netherland: Amsterdam University Press. DOI: 10.1515/9789048531011
- Vydra, S, Poama, A, Giest, S. 2021. Big data ethics: A life cycle perspective. Erasmus Law Review, 14(1): 24. DOI: 10.5553/ELR.000190
- Wiktionary. 2022. technicity. Available at:
https://en.wiktionary.org/wiki/technicity [Last accessed 15 February 2023]. - Wilkinson, M, Dumontier, M, Aalbersberg, I, et al. 2016. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Nature Scientific Data, 3:
160018 . DOI: 10.1038/sdata.2016.18 - Wise, AF. 2020. Educating data scientists and data literate citizens for a new generation of data. Journal of the Learning Sciences, 29(1): 165–181. DOI: 10.1080/10508406.2019.1705678
- Wolff, A, Gooch, D, Cavero Montaner, JJ, et al. 2016. Creating an understanding of data literacy for a data-driven society. Journal of Community Informatics, 12(3): 9–26. DOI: 10.15353/joci.v12i3.3275
- Zhang, L, Downs, RR, Li, J, et al. 2021. A review of open research data policies and practices in China. Data Science Journal, 20(1): 3. DOI: 10.5334/dsj-2021-003
