Have a personal or library account? Click to login
Looking Back to the Future: A Glimpse at Twenty Years of Data Science Cover

Looking Back to the Future: A Glimpse at Twenty Years of Data Science

By: Lili Zhang  
Open Access
|Apr 2023

References

  1. Ash, J. 2012. Technology, technicity, and emerging practices of temporal sensitivity in videogames. Environment and Planning A: Economy and Space, 44(1): 187203. DOI: 10.1068/a44171
  2. Bol, T, de Vaan, M and van de Rijt, A. 2018. The Matthew effect in science funding. Proceedings of the National Academy of Sciences, 115(19): 48874890. DOI: 10.1073/pnas.1719557115
  3. Borgman, CL. 2015. Big Data, Little Data, No Data. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/9963.001.0001
  4. Borgman, CL. 2018. Open data, grey data, and stewardship: Universities at the privacy frontier. Berkeley Technology Law Journal, 33(2): 365412.
  5. Brehm, W. 2022. Podcasting and education: Reflections on the case of FreshEd. ECNU Review of Education, 5(4): 784791. DOI: 10.1177/20965311221094860
  6. Breu, C and Leo, JRD. 2022. Infrastructuralism. symplokē, 31(1–2). Available at: https://www.symploke.org/infrastructuralism/ [Last accessed 15 February 2023].
  7. Calzada, I and Almirall, E. 2020. Data ecosystems for protecting European citizens’ digital rights. Transforming Government: People, Process and Policy, 14(2): 133147. DOI: 10.1108/TG-03-2020-0047
  8. Cao, L. 2017. Data science: A comprehensive overview. ACM Computing Surveys, 50(3), Article 43: 142. DOI: 10.1145/3076253
  9. Carroll, SR, Garba, I, Oscar, L, et al. 2020. The CARE principles for Indigenous data governance. Data Science Journal, 19(1): 43. DOI: 10.5334/dsj-2020-043
  10. Carroll, SR, Rodriguez-Lonebear, D and Martinez, A. 2019. Indigenous data governance: Strategies from United States Native nations. Data Science Journal, 18(1): 31. DOI: 10.5334/dsj-2019-031
  11. CODATA. 2021. Global Open Science Cloud. Available at: https://codata.org/initiatives/decadal-programme2/global-open-science-cloud/ [Last accessed 6 December 2022].
  12. CODATA, CODATA IDPC, CODATA and CODATA China High-level International Meeting on Open Research Data Policy and Practice, et al. 2019. The Beijing Declaration on Research Data. Zenodo. DOI: 10.5281/zenodo.3552330
  13. Combes, F. 2021. Science with SKA. arXiv:2107.03915 [astro-ph.CO]. SF2A 2021: 238242. DOI: 10.48550/arXiv.2107.03915
  14. CSTCloud. 2021. Global Open Science Cloud. Available at: https://www.cstcloud.net/gosc.htm [Last accessed 6 December 2022].
  15. Dhar, V. 2013. Data science and prediction. Communications of the ACM, 56(12): 6473. DOI: 10.1145/2500499
  16. Ducassé, P and Lee, D. 2014. Technics and the philosopher. Diacritics, 42(1): 2544. DOI: 10.1353/dia.2014.0002
  17. Floridi, L and Taddeo, M. 2016. What is data ethics? Philosophical Transactions of the Royal Society A, 374(2083): 20160360. DOI: 10.1098/rsta.2016.0360
  18. Gallope, M. 2011. Technicity, consciousness, and musical objects. In: Clarke, D and Clarke, E, Music and Consciousness: Philosophical, Psychological, and Cultural Perspectives, 4764. 1st ed. New York: Oxford University Press. DOI: 10.1093/acprof:oso/9780199553792.003.0030
  19. George, A and Walsh, T. 2022. Artificial intelligence is breaking patent law. Nature, 605: 616618. DOI: 10.1038/d41586-022-01391-x
  20. Gummer, ES and Mandinach, EB. 2015. Building a conceptual framework for data literacy. Teachers College Record, 117(4): 122. DOI: 10.1177/016146811511700401
  21. Gundersen, LC. 2017. Scientific integrity and ethical considerations for the research data life cycle. In: Gunderson, LC, Scientific Integrity and Ethics in the Geosciences, 133153. Washington, DC: American Geophysical Union and John Wiley and Sons. DOI: 10.1002/9781119067825.ch9
  22. Guo, H, Chen, F, Sun, Z, Liu, J and Liang, D. 2021. Big Earth Data: A practice of sustainability science to achieve the Sustainable Development Goals. Science Bulletin (Beijing), 66(11): 10501053. DOI: 10.1016/j.scib.2021.01.012
  23. Gurumurthy, A, Chami, N and Bharthur, D. 2016. Democratic accountability in the digital age. IT for Change. Available at: https://www.ids.ac.uk/publications/democratic-accountability-in-the-digital-age/ [Last accessed 14 February 2023]. DOI: 10.2139/ssrn.3875297
  24. International Science Council (ISC). 2021. Science and Society in Transition: ISC Action Plan 2022–2024. Available at: https://council.science/actionplan/ [Last accessed 3 December 2022].
  25. Kempeneer, S. 2021. A big data state of mind: Epistemological challenges to accountability and transparency in data-driven regulation. Government Information Quarterly, 38(3): 101578. DOI: 10.1016/j.giq.2021.101578
  26. Lin, D, Crabtree, J, Dillo, I, et al. 2020. The TRUST principles for digital repositories. Scientific Data, 7(1): 144. DOI: 10.1038/s41597-020-0486-7
  27. Luan, H, Geczy, P, Lai, H, et al. 2020. Challenges and future directions of big data and artificial intelligence in education. Frontiers in Psychology, 11: 580820. DOI: 10.3389/fpsyg.2020.580820
  28. Malgonde, O and Bhattacherjee, A. 2014. Innovating using big data: A social capital perspective. Twentieth Americas Conference on Information Systems, Savannah, Georgia.
  29. Mayer-Schönberger, V and Cukier, K. 2013. Big Data: A Revolution That Will Transform How We Live, Work and Think. Boston, MA: Houghton Mifflin Harcourt.
  30. Mayernik, MS, Hart, DL, Maull, KE, et al. 2017. Assessing and tracing the outcomes and impact of research infrastructures. Journal of the Association for Information Science and Technology, 68: 13411359. DOI: 10.1002/asi.23721
  31. Mejias, UA and Couldry, N. 2019. Datafication. Internet Policy Review, 8(4). DOI: 10.14763/2019.4.1428
  32. Merton, RK. 1968. The Matthew effect in science. Science, 159(3810): 5663. DOI: 10.1126/science.159.3810.56
  33. Merton, RK. 1988. The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. isis, 79(4): 606623. DOI: 10.1086/354848
  34. National Academies of Sciences, Engineering, and Medicine (NASEM), Division of Behavioral and Social Sciences and Education, Board on Science Education, et al. 2018. Data Science for Undergraduates: Opportunities and Options. Washington, DC: National Academies Press. Available at: https://www.ncbi.nlm.nih.gov/books/NBK532765/ [Last accessed 13 February 2023].
  35. Provost, F and Fawcett, T. 2013. Data science and its relationship to big data and data-driven decision making. Big Data, 1(1): 5159. DOI: 10.1089/big.2013.1508
  36. Science International. 2015. Open Data in a Big Data World. Paris: International Council for Science (ICSU), International Social Science Council (ISSC), the World Academy of Sciences (TWAS), InterAcademy Partnership (IAP).
  37. Shanks, G and Corbitt, B. 1999. Understanding data quality: Social and cultural aspects. In: Proceedings of the 10th Australasian Conference on Information Systems, 785. New Zealand: Victoria University of Wellington.
  38. Silver, D, Schrittwieser, J, Simonyan, K, et al. 2017. Mastering the game of Go without human knowledge. Nature, 550(7676): 354359. DOI: 10.1038/nature24270
  39. Taylor, L. 2017. What is data justice? The case for connecting digital rights and freedoms globally. Big Data & Society, 4(2): 2053951717736335. DOI: 10.1177/2053951717736335
  40. UN Sustainable Development Group. 2022. Operationalizing Leaving No One Behind. Available at: https://unsdg.un.org/resources/leaving-no-one-behind-unsdg-operational-guide-un-country-teams [Last accessed 12 February 2023].
  41. UNESCO. 2021. UNESCO Recommendation on Open Science. Available at: https://en.unesco.org/science-sustainable-future/open-science/recommendation [Last accessed 5 December 2022].
  42. van Dis, EAM, Bollen, J, Zuidema, W, et al. 2023. ChatGPT: Five priorities for research. Nature, 614(7947): 224226. DOI: 10.1038/d41586-023-00288-7
  43. Van Es, K and Schäfer, MT. 2017. The Datafied Society: Studying Culture through Data. Amsterdam, Netherland: Amsterdam University Press. DOI: 10.1515/9789048531011
  44. Vydra, S, Poama, A, Giest, S. 2021. Big data ethics: A life cycle perspective. Erasmus Law Review, 14(1): 24. DOI: 10.5553/ELR.000190
  45. Wiktionary. 2022. technicity. Available at: https://en.wiktionary.org/wiki/technicity [Last accessed 15 February 2023].
  46. Wilkinson, M, Dumontier, M, Aalbersberg, I, et al. 2016. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Nature Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
  47. Wise, AF. 2020. Educating data scientists and data literate citizens for a new generation of data. Journal of the Learning Sciences, 29(1): 165181. DOI: 10.1080/10508406.2019.1705678
  48. Wolff, A, Gooch, D, Cavero Montaner, JJ, et al. 2016. Creating an understanding of data literacy for a data-driven society. Journal of Community Informatics, 12(3): 926. DOI: 10.15353/joci.v12i3.3275
  49. Zhang, L, Downs, RR, Li, J, et al. 2021. A review of open research data policies and practices in China. Data Science Journal, 20(1): 3. DOI: 10.5334/dsj-2021-003
Language: English
Submitted on: Dec 17, 2022
|
Accepted on: Feb 28, 2023
|
Published on: Apr 5, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Lili Zhang, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.