References
- 1AgReFed. 2021. AgReFed – Agricultural Research Federation. Agricultural Research Federation. Available at:
https://www.agrefed.org.au [Last accessed 11 November 2021]. - 2Allemang, D and Bobbin, T. 2016. A Global Data Ecosystem for Agriculture and Food. Oxfordshire: GODAN, CABI. Available at:
https://www.godan.info/sites/default/files/documents/Godan_Global_Data_Ecosystem_Publication_lowres.pdf [Last accessed 17 December 2021]. - 3Antle, JM, et al. 2017. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agricultural Systems, 155: 255–268. DOI: 10.1016/j.agsy.2016.10.002
- 4ARDC. 2020. AgReFed: A platform for the transformation of agricultural research. Australian Research Data Commons. DOI: 10.47486/PL005
- 5Bahim, C, et al. 2020. The FAIR data maturity model: An approach to harmonise FAIR assessments. Data Science Journal, 19(1): 1–7. DOI: 10.5334/dsj-2020-041
- 6Barry, S, et al. 2017. Precision to Decision – Current and Future State of Agricultural Data for Digital Agriculture in Australia. Available at:
https://www.crdc.com.au/precision-to-decision [Last accessed 11 November 2021]. - 7Box, P, et al. 2019a. Guidelines for the development of a Data Stewardship and Governance Framework for the Agricultural Research Federation (AgReFed). Sydney: Commonwealth Scientific Industrial Research Organisation. DOI: 10.25919/5cf179ba35db9
- 8Box, P, et al. 2019b. White Paper for the enactment phase of the Agricultural Research Federation (AgReFed). Sydney: Commonwealth Scientific Industrial Research Organisation. DOI: 10.5281/ZENODO.3706374
- 9Buchanan, JM. 1965. An Economic Theory of Clubs. Economica, 32: 1–14. DOI: 10.2307/2552442
- 10CGIAR. 2021. CGIAR Platform for Big Data in Agriculture
https://bigdata.cgiar.org/ [Last accessed 15 November 2021]. - 11Chiles, RM, et al. 2021. Democratizing ownership and participation in the 4th Industrial Revolution: challenges and opportunities in cellular agriculture. Agriculture and Human Values, 38: 943–961. DOI: 10.1007/s10460-021-10237-7
- 12Collins, S, et al. 2018. Turning FAIR into reality. Brussels: European Commission. DOI: 10.2777/1524
- 13Cox, S, and Gregory, L. 2020. RDF representation of ASLS soil profile classification. v1. Australia: CSIRO. DOI: 10.25919/5f42f324b2ef8
- 14Cox, SJD, et al. 2021. Ten simple rules for making a vocabulary FAIR. PLOS Computational Biology, 17(6):
1009041 . DOI: 10.1371/journal.pcbi.1009041 - 15Corangamite Catchment Management Authority. 2019. Corangamite Soil Health Monitoring Program Data. Version 1.0. Mt Helen, Australia: Federation University. DOI: 10.25955/5c1c6b8f4d8d2
- 16CSIRO. 2013. CSIRO National Soil Site Database. Version 1. Australia: CSIRO. DOI: 10.25919/5c36d77a6299c
- 17Datacite. 2022. Repository Finder. The Enabling FAIR Data Project and FAIRsFAIR Project. Accessible at:
https://repositoryfinder.datacite.org/ [Last accessed at 02 March 2022]. - 18Devaraju, A, et al. 2021. From Conceptualization to Implementation: FAIR Assessment of Research Data Objects. Data Science Journal, 20(4): 1–14. DOI: 10.5334/dsj-2021-004
- 19Devare, M, et al. 2021. AgroFIMS: A Tool to Enable Digital Collection of Standards-Compliant FAIR Data. Frontiers of Sustainable Food Systems, 5: 1–12. DOI: 10.3389/fsufs.2021.726646
- 20Drakos, A, Protonotarios, V and Manouselis, N. 2015. agINFRA: A research data hub for agriculture, food and the environment. F1000Research, 4. DOI: 10.12688/f1000research.6349.2
- 21Ernst and Young. 2019. Agricultural Innovation – A National Approach to Grow Australia’s Future. Accessible at:
https://www.awe.gov.au/sites/default/files/sitecollectiondocuments/agriculture-food/innovation/summary-report-agricultural-innovation.PDF [Last accessed 24 March 2022]. - 22FAIR Data Points. 2022. Fair Data Points. Available at
https://www.fairdatapoint.org/ [Last accessed 24 March 2022]. - 23Harper, L, et al. 2018. AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture. Database. DOI: 10.1093/database/bay088
- 24Ingram, J, et al. 2022. What are the priority research questions for digital agriculture? Land Use Policy, 114. DOI: 10.1016/j.landusepol.2021.105962
- 25ISO/IEC. 1996. Information technology -- Open Distributed Processing – Reference Model: Architecture. ISO/IEC 10746-3: 1996. Geneva, Switzerland: ISO/IEC.
- 26Jakku, E, et al. 2019. “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS – Wageningen Journal of Life Sciences, 100285: 90–91. DOI: 10.1016/j.njas.2018.11.002
- 27Kenney, M, Serhan, H and Trystram, G. 2020. Digitization and Platforms in Agriculture: Organizations, Power 2020 Asymmetry, and Collective Action Solutions. SSRN, 1–50. DOI: 10.2139/ssrn.3638547
- 28Knapen, MJR, et al. 2020.
AGINFRA PLUS: Running Crop Simulations on the D4Science Distributed e-Infrastructure . In: Environmental Software Systems. Data Science in Action. ISESS 2020. IFIP Advances in Information and Communication Technology, vol 554. Cham: Springer. DOI: 10.1007/978-3-030-39815-6_8 - 29Kruseman, G, et al. 2020. CGIAR modelling approaches for resource- constrained scenarios: II. Models for analyzing socioeconomic factors to improve policy recommendations. Crop Science, 60(2): 568–581. DOI: 10.1002/csc2.20114
- 30Lin, D, et al. 2020. The TRUST Principles for digital repositories. Scientific Data, 7(1): 1–5. DOI: 10.1038/s41597-020-0486-7
- 31Levett, K, Wong, M and MacLeod, A. 2022. Testing of AgReFed FAIR data Minimum Thresholds and Stretch Targets (Version 1). Zenodo. DOI: 10.5281/zenodo.6541413
- 32MacLeod, A, et al. 2020. The Agricultural Research Federation (AgReFed) Technical and Information Policy Suite. The Agricultural Research Federation. DOI: 10.5281/ZENODO.3993784
- 33One Geology. 2020. One Geology. Available at
https://www.onegeology.org/ [Last accessed 24 March 2022]. - 34Pearson, S, et al. 2021. Food Data Trust: A framework for information sharing. United Kingdom: Food Standards Agency and University of Lincon. FSA, project ref FS301083. DOI: 10.5281/zenodo.4575565
- 35Pentland, A and Hardjono, T. 2020. Data Cooperatives. In Building the New Economy. DOI: 10.21428/ba67f642.0499afe0
- 36Perrett, E, et al. 2017. Accelerating Precision Agriculture to Decision Agriculture – Analysis of the Economic Benefit and Strategies for Delivery of Digital Agriculture in Australia. Sydney: Australian Farm Institute. Available at:
https://www.crdc.com.au/precision-to-decision . - 37Peters-von Gehlen, K, et al. 2022. Recommendations for Discipline-Specific FAIRness Evaluation Derived from Applying an Ensemble of Evaluation Tools. Data Science Journal, 21: 1–21. DOI: 10.5334/dsj-2022-007
- 38Petrie, R, et al. 2021. Coordinating an operational data distribution network for CMIP6 data. Geoscientific Model Development, 14: 629–644. DOI: 10.5194/gmd-14-629-2021
- 39Plante, RL, et al. 2021. Implementing a registry federation for materials science data discovery. Data Science Journal, 20: 1–9. DOI: 10.5334/dsj-2021-015
- 40Rossel, V, et al. 2014.
Soil and Landscape Grid National Soil Attribute Maps - Available Water Capacity (3” resolution) – Release 1. Version 4 . Australia: CSIRO. DOI: 10.4225/08/546ED604ADD8A - 41Sanderman, J, et al. 2015. Waite Permanent Rotation Trial. Version 4. Australia: CSIRO. DOI: 10.4225/08/55E5165EC0D29
- 42Sanderson, T, Reeson, A, and Box, P. 2017. Cultivating Trust: Towards an Australian Agricultural Data Market. Commonwealth Scientific Industrial Research Organisation. DOI: 10.21820/23987073.2017.10.62
- 43Sansone, S, et al. 2019. FAIRsharing, a cohesive community approach to the growth in standards, repositories and policies. Nature Biotechnology, 37: 358–367. DOI: 10.1038/s41587-019-0080-8
- 44Schneider, D, et al. 2018. SensorNets – SMART Farms Soil Moisture Network. Australia: University of New England. DOI: 10.4226/95/5b10d5ca18aef
- 45Schweitzer, M, et al. 2021. au-research/FAIR-Data-Assessment-Tool: Release v1.0. Australian Research Data Commons. DOI: 10.5281/zenodo.4971127
- 46Shaw, F, et al. 2020. COPO: a metadata platform for brokering FAIR data in the life sciences [version 1; peer review: 1 approved]. F1000Research, 9(495). DOI: 10.12688/f1000research.23889.1
- 47Southern Farming Systems (SFS). 2011. Southern Farming Systems Moisture Probe Network Data. Australia: Federation University DOI: 10.25955/5cdcff6168a76
- 48Taylor, N, et al. 2019. UWA/DPIRD Frost Nursery Trial 2018. Australia: The University of Western Australia. DOI: 10.26182/5cedf001186f3
- 49USDA. 2021.
Ag Data Commons . U.S. Department of Agriculturehttps://data.nal.usda.gov/ [Last accessed 24 March 2022]. - 50Wicquart, J, et al. 2022. A workflow to integrate ecological monitoring data from different sources. Ecological Informatics, 68. DOI: 10.1016/j.ecoinf.2021.101543
- 51Wilkinson, MD, et al. 2016. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(160018). DOI: 10.1038/sdata.2016.18
- 52Wiseman, L and Sanderson, J. 2018. Legal and trust issues in Australian agriculture. In: 40th Annual Conference Australian Society of Sugar Cane Technologists.
ASSCT. Handle: 10072/379876 . - 53Wong, M, et al. 2021. Agricultural Research Federation (AgReFed) Steering Policies, Roles and Responsibilities (Version 1.1). Agricultural Research Federation. DOI: 10.5281/zenodo.5205273
