Have a personal or library account? Click to login

References

  1. 1Aguilar, E, Auer, I, Brunet, M, Peterson, TC and Wieringa, J. 2003. Guidelines on climate metadata and homogenization, WCDMP-No. 53, WMO-TD No. 1186. Geneva: World Meteorological Organization.
  2. 2Brunet, M, Brugnara, Y, Noone, S, Stephens, A, Valente, M A, Ventura, C, Jones, P, Gilabert, A, Brönnimann, S, Luterbacher, J, Allan, R, Brohan, P and Compo, GP. 2020. Best Practice Guidelines for Climate Data and Metadata Formatting, Quality Control and Submission. Reading, UK: Copernicus Climate Change Service.
  3. 3Buontempo, C, Hanlon, HM, Bruno Soares, M, Christel, I, Soubeyroux, J-M, Viel, C, Calmanti, S, Bosi, L, Falloon, P, Palin, EJ, Vanvyve, E, Torralba, V, Gonzalez-Reviriego, N, Doblas-Reyes, F, Pope, ECD, Newton, P and Liggins, F. 2018. What have we learnt from EUPORIAS climate service prototypes? Climate Services, 9: 2132. DOI: 10.1016/j.cliser.2017.06.003
  4. 4Callahan, T, Barnard, J, Helmkamp, L, Maertens, J and Kahn, M. 2017. Reporting data quality assessment results: Identifying individual and organizational barriers and solutions. eGEMs, 5(1). DOI: 10.5334/egems.214
  5. 5European Commission (EC). 2020. Copernicus and earth observation in support of eu policies. Part I, Copernicus uptake in the european commission. DOI: 10.2760/024084
  6. 6European Commission (EC), Directorate-General for Research and Innovation. 2015. European Union: A European Research and Innovation Roadmap for Climate Services. DOI: 10.2777/702151
  7. 7European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). 2014. CORE-CLIMAX System Maturity Matrix Instruction Manual (Doc. No. CC/EUM/MAN/13/002). Available at https://masif.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CORE_CLIMAX_MANUAL&RevisionSelectionMethod=LatestReleased&Rendition=Web.
  8. 8Evans, B, Druken, K, Wang, J, Yang, R, Richards, C and Wyborn, L. 2017. A data quality strategy to enable fair, programmatic access across large, diverse data collections for high performance data analysis. Informatics, 4(4): 45. DOI: 10.3390/informatics4040045
  9. 9Hewitt, CD, Allis, E, Mason, SJ, Muth, M, Pulwarty, R, Shumake-Guillemot, J, Bucher, A, Brunet, M, Fischer, AM, Hama, AM, Kolli, RK, Lucio, F, Ndiaye, O and Tapia, B. 2020. Making society climate resilient: International progress under the global framework for climate services. Bulletin of the American Meteorological Society, 101(2): E237E252. DOI: 10.1175/BAMS-D-18-0211.1
  10. 10ISO 14090:2019. Adaptation to climate change — Principles, requirements and guidelines. Geneva, Switzerland. https://www.iso.org/standard/68507.html.
  11. 11ISO 14091:2021. Adaptation to climate change — Guidelines on vulnerability, impacts and risk assessment. Geneva, Switzerland. https://www.iso.org/standard/68508.html.
  12. 12ISO 19157:2013. Geographic information — Data quality. Geneva, Switzerland. https://www.iso.org/standard/32575.html.
  13. 13Lawrence, B, Jones, C, Matthews, B, Pepler, S and Callaghan, S. 2011. Citation and peer review of data: Moving towards formal data publication. International Journal of Digital Curation, 6(2): 437. DOI: 10.2218/ijdc.v6i2.205
  14. 14Leadbetter, A, Carr, R, Flynn, S, Meaney, W, Moran, S, Bogan, Y, Brophy, L, Lyons, K, Stokes, D and Thomas, R. 2020. Implementation of a data management quality management framework at the marine institute, Ireland. Earth Science Informatics, 13(2): 509521. DOI: 10.1007/s12145-019-00432-w
  15. 15Lin, D, Crabtree, J, Dillo, I, Downs, RR, Edmunds, R, Giaretta, D, De Giusti, M, L’Hours, H, Hugo, W, Jenkyns, R, Khodiyar, V, Martone, ME, Mokrane, M, Navale, V, Petters, J, Sierman, B, Sokolova, DV, Stockhause, M and Westbrook, J. 2020. The TRUST Principles for digital repositories. Scientific Data, 7(1): 144. DOI: 10.1038/s41597-020-0486-7
  16. 16Medri, S, Banos de Guisasola, E and Gualdi, S. 2012. Overview of the main international climate services. Social Science Research Network. SSRN Scholarly Paper ID 2194841. DOI: 10.2139/ssrn.2194841
  17. 17Nightingale, J, Boersma, KF, Muller, J-P, Compernolle, S, Lambert, J-C, Blessing, S, Giering, R, Gobron, N, De Smedt, I, Coheur, P, George, M, Schulz, J and Wood, A. 2018. Quality assurance framework development based on six new ecv data products to enhance user confidence for climate applications. Remote Sensing, 10(8): 1254. DOI: 10.3390/rs10081254
  18. 18Nightingale, J, Mittaz, JPD, Douglas, S, Dee, D, Ryder, J, Taylor, M, Old, C, Dieval, C, Fouron, C, Duveau, G and Merchant, C. 2019. Ten priority science gaps in assessing climate data record quality. Remote Sensing, 11(8): 986. DOI: 10.3390/rs11080986
  19. 19Peng, G. 2018. The state of assessing data stewardship maturity – an overview. Data Science Journal, 17: 7. DOI: 10.5334/dsj-2018-007
  20. 20Peng, G, Lacagnina, C, Downs, RR, Ramapriyan, H, Ivánová, I, Ganske, A, le Roux, J, et al. 16 Apr. 2021. International Community Guidelines for Sharing and Reusing Quality Information of Individual Earth Science Datasets, OSF Preprints. DOI: 10.31219/osf.io/xsu4p
  21. 21Rfll, German Council for Scientific Information Infrastructures. 2020. The Data Quality Challenge. Recommendations for Sustainable Research in the Digital Turn. Göttingen.
  22. 22Stockhause, M, Höck, H, Toussaint, F and Lautenschlager, M. 2012. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data. Geoscientific Model Development, 5(4): 10231032. DOI: 10.5194/gmd-5-1023-2012
  23. 23Thépaut, J, Dee, D, Engelen, R and Pinty, B. 2018. The Copernicus Programme and its Climate Change Service. IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, 1591–1593. DOI: 10.1109/IGARSS.2018.8518067
  24. 24Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Mons, B, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1): 160018. DOI: 10.1038/sdata.2016.18
  25. 25WMO/WIGOS. 2017. WIGOS Metadata Standard. Geneva: World Meteorological Organization, WMO no. 1192.
  26. 26Zeng, Y, Su, Z, Barmpadimos, I, Perrels, A, Poli, P, Boersma, F, Frey, A, Ma, X, Bruin, K de, Goosen, H, John, VO, Roebeling, R, Schulz, J and Timmermans, WJ. 2019. Towards a traceable climate service: Assessment of quality and usability of essential climate variables. Remote Sensing, 11(10): 128. DOI: 10.3390/rs11101186
Language: English
Submitted on: Nov 25, 2021
Accepted on: Mar 17, 2022
Published on: Apr 4, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Carlo Lacagnina, Francisco Doblas-Reyes, Gilles Larnicol, Carlo Buontempo, André Obregón, Montserrat Costa-Surós, Daniel San-Martín, Pierre-Antoine Bretonnière, Suraj D. Polade, Vanya Romanova, Davide Putero, Federico Serva, Alba Llabrés-Brustenga, Antonio Pérez, Davide Cavaliere, Olivier Membrive, Christian Steger, Núria Pérez-Zanón, Paolo Cristofanelli, Fabio Madonna, Marco Rosoldi, Aku Riihelä, Markel García Díez, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.