Have a personal or library account? Click to login
Global Community Guidelines for Documenting, Sharing, and Reusing Quality Information of Individual Digital Datasets Cover

Global Community Guidelines for Documenting, Sharing, and Reusing Quality Information of Individual Digital Datasets

Open Access
|Mar 2022

References

  1. 1Albani, M and Maggio, I. 2020. CEOS WGISS Data Management and Stewardship Maturity Matrix and Application at ESA. Pre-ESIP Workshop, 13 July 2020, Virtual. DOI: 10.6084/m9.figshare.12711896
  2. 2Baker, KS, Duerr, RE and Parsons, MA. 2016. Scientific knowledge mobilization: Co-evolution of data products and designated communities. International Journal of Digital Curation, 10(2): 110135. DOI: 10.2218/ijdc.v10i2.346
  3. 3Bastin, L, Cornford, D, Jones, R, Heuvelink, GBM, Pebesma, E, Stasch, C, Nativi, S, Mazzetti, P, and Williams, M. 2013. Managing uncertainty in integrated environmental modelling: The UncertWeb framework. Environmental Modelling and Software, 39: 116134. DOI: 10.1016/j.envsoft.2012.02.008
  4. 4Bugbee, K, le Roux, J, Sisco, A, Kaulfus, A, Staton, P, Woods, C, Dixon, V, Lynnes, C and Ramachandran, R. 2021. Improving discovery and use of NASA’s Earth observation data through metadata quality assessments. Data Science Journal, 20(1): 17. DOI: 10.5334/dsj-2021-017
  5. 5Callahan, T, Barnard, J, Helmkamp, L, Maertens, J, and Kahn, M. 2017. Reporting data quality assessment results: Identifying individual and organizational barriers and solutions. eGEMs, 5(1). DOI: 10.5334/egems.214
  6. 6Cordy, CE and Coryea, LR. 2006. Champion’s Practical Six Sigma Summary. Version: 27 January 2006. Xlibris Corporation. 65 pp. ISBN 978-1-4134-9681-9
  7. 7CoreTrustSeal. 2019. Core Trustworthy Data Repository Requirements 2020–2022 – Extended Guidance. Version 2.0 November 2019. Zenodo. https://zenodo.org/record/3638211#.YCfqv89Ki7M.
  8. 8Cosoli, S and Grcic, B. 2019. Quality control procedures for IMOS Ocean Radar Manual Version 2.1. Integrated Marine Observing System. DOI: 10.26198/5c89b59a931cb
  9. 9Cowley, R. 2021. Report on the quality control of the IMOS East Australian Current (EAC) deep water moorings array. Deployed: April/May 2018 to September, 2019. Version 1.1. Hobart, Australia: CSIRO Oceans and Atmosphere, 56pp. DOI: 10.26198/5r16-xf23
  10. 10Davies, C and Sommerville, E (eds) 2020. National Reference Stations Biogeochemical Operations Manual Version 3.3.1. Hobart, Australia. Integrated Marine Observing System, 66pp. DOI: 10.26198/5c4a56f2a8ae3
  11. 11Digital Science, Fane, B, Ayris, P, Hahnel, M, Hrynaszkiewicz, I, Baynes, G and others. 2019. The State of Open Data Report 2019. Digital Science. Report. DOI: 10.6084/m9.figshare.9980783
  12. 12Downs, R, Moroni, C, Peng, G, Ramapriyan, HK and Wei, Y. 2021. Documentation to Foster Sharing and Use of Open Earth Science Data: Quality Information. International Digital Curation Conference (IDCC), 19 April 2021. Virtual. Zenodo. DOI: 10.5281/zenodo.4701361
  13. 13Downs, RR. 2020. GEOSS Data Management & Data Sharing Principles and TRUST – Implications for Information Quality. Pre-ESIP Workshop, 13 July 2020, Virtual. DOI: 10.6084/m9.figshare.12711989
  14. 14Drévillon, M, García-Hermosa, I, Sotillo, MG, Régnier, C and the CMEMS Product Quality Working Group. 2020. Production of Quality Information at the Copernicus Marine Environment Monitoring Service (CMEMS). ESIP Summer Meeting, 22 July 2020, Virtual. DOI: 10.6084/m9.figshare.12721592
  15. 15Figgemeier, H, Henzen, C and Rümmler, A. 2021. A geo-dashboard concept for the interactively linked visualization of provenance and data quality for geospatial datasets. AGILE GIScience Ser., 2: 25. DOI: 10.5194/agile-giss-2-25-2021
  16. 16Goldberg, M and Zhou, L. 2020. JPSS & Product Algorithm Maturity Matrix and Application. Pre-ESIP Workshop, 13 July 2020, Virtual. DOI: 10.6084/m9.figshare.12711869
  17. 17Henzen, C, Della Chiesa, S and Bernard, L. 2021. Recommendations for Future Data Management Plans in Earth System Sciences. AGILE GIScience Ser., 2: 31. DOI: 10.5194/agile-giss-2-31-2021
  18. 18Heydebreck, D, Ganske, A, Kraft, A, Kaiser, A, Thiemann, H, Habermann, T and Peng, G. 2020. Maturity Indicator – potential extension to the DataCite Metadata Schema. GitHub. Version 7.1. Available at: https://github.com/AtMoDat/maturity-indicator.
  19. 19Höck, H, Toussaint, F and Thiemann, H. 2020. Fitness for use of data objects described with quality maturity matrix at different phases of data production. Data Science Journal, 19(1): 45. DOI: 10.5334/dsj-2020-045
  20. 20Hou, Y. 2020. Interpreting and Applying the FAIR Principle Checks. ESIP Summer Meeting, 22 July 2020, Virtual. DOI: 10.6084/m9.figshare.12721628
  21. 21ISO 19115-1. 2014. Geographic Information—Metadata – Part 1: Fundamentals. Version: 2014–04. International Organization for Standardization. Geneva, Switzerland. Available at: https://www.iso.org/standard/53798.html.
  22. 22ISO 19157. 2013. Geographic information – Data quality, Geneva, Switzerland. Available at: https://www.iso.org/standard/32575.html.
  23. 23Ivánová, I, Peng, G, Lacagnina, C and ODG Data Quality Domain Working Group. 2021. OGC quality makes data FAIR workshop. 15 June 2021. Virtual. Presentations are available from: https://www.ogc.org/projects/groups/dqdwg.
  24. 24Lacagnina, C, Peng, G, Downs, RR, Ramapriyan, H, Ivánová, I and others. 2021a. Towards Developing Community Guidelines for Sharing and Reusing Quality Information of Earth Science Datasets. European Geosciences Union General Assembly, 19–30 April 2021. EGU21–23, 27 April 2021. Virtual. DOI: 10.5194/egusphere-egu21-23
  25. 25Lacagnina, C, Peng, G, Ivánová, I and others. 2021b. Global Community Effort on Sharing Dataset Quality Information. OGC “Quality makes data FAIR” Workshop, 15 June 2021. Virtual.
  26. 26Lee, YW, Strong, DM, Khan, BK and Wang, RY. 2002. AIMQ: A methodology for information quality assessment. Information & Management, 40: 133146. DOI: 10.1016/S0378-7206(02)00043-5
  27. 27Lemieux, P, III, Peng, G and Scott, DJ. 2017. Data Stewardship Maturity Report for NOAA Climate Data Record (CDR) of Passive Microwave Sea Ice Concentration, Version 2. Figshare. DOI: 10.6084/m9.figshare.5279932
  28. 28Lief, C, Wright, W, Peng, G, Baddour, O, Siegmund, P, Berod, D, Dunn, R, Cazenave, A and Brunet, M. 2020. The High-Quality Global Data Management Framework for Climate – Improving the Quality of Climate Data Management for Better Climate Monitoring. Pre-ESIP Workshop, 13 July 2020, Virtual. DOI: 10.6084/m9.figshare.12712001
  29. 29Lin, D, Crabtree, J, Dillo, I, Downs, RR, Edmunds, R, Giaretta, D, De Giusiti, M, L’Hours, H, Hugo, W, Jenkyns, R, Khodiyar, V, Martone, M, Mokrane, M, Navale, V, Petters, J, Sierman, B, Sokolova, DV, Stockhause, M and Westbrook, J. 2020. The TRUST principles for digital repositories. Scientific Data, 7: 144. DOI: 10.1038/s41597-020-0486-7
  30. 30Matthews, JL, Mannshardt, E and Gremaud, P. 2013. Uncertainty quantification for climate observations. Bulletin of the American Meteorological Society, 94: ES21ES25. DOI: 10.1175/BAMS-D-12-00042.1
  31. 31Moroni, DF, Ramapriyan, HK, Peng, G, Hobbs, J, Goldstein, JC, Downs, RR, Wolfe, R, Shie, C-L, Merchant, CJ, Bourassa, M, Matthews, JL, Cornillon, P, Bastin, L, Kehoe, K, Smith, B, Privette, JL, Subramanian, AC, Brown, O and Ivánová, I. 2019. Understanding the Various Perspectives of Earth Science Observational Data Uncertainty. Figshare. DOI: 10.6084/m9.figshare.10271450
  32. 32Peng, G, Lacagnina, C, Downs, RR, Ivánová, I, Larnicol, G, Moroni, DF, Ramapriyan, H and Wei, Y. 2020a. Case Statement for Community Guidelines for FAIR Dataset Quality Information. Figshare. DOI: 10.6084/m9.figshare.12605438
  33. 33Peng, G, Lacagnina, C, Downs, RR, Ivánová, I, Moroni, DF, Ramapriyan, H, Wei, Y and Larnicol, G. 2020b. Laying the Groundwork for Developing International Community Guidelines to Effectively Share and Reuse Digital Data Quality Information – Case Statement, Workshop Summary Report, and Path Forward. Open Science Framework. DOI: 10.31219/osf.io/75b92
  34. 34Peng, G, Lacagnina, C, Downs, RR, Ramapriyan, Ivánová, I and others. 2020c. Towards Developing Community Guidelines for Sharing and Reuse of Digital Data Quality Information. IN012-04. AGU Fall Meeting 2020. Talk. Dec 8, 2020. Virtual.
  35. 35Peng, G, Downs, RR, Lacagnina, C, Ramapriyan, H, Ivánová, I and others. 2021a. Call to action for global access to and harmonization of quality information of individual Earth science datasets. Data Science Journal, 20. DOI: 10.5334/dsj-2021-019
  36. 36Peng, G, Lacagnina, C, Ivánová, I, Downs, RR, Ramapriyan, H, Ganske, A and others. 2021b. International Community Guidelines for Sharing and Reusing Quality Information of Individual Earth Science Datasets. Open Science Framework. DOI: 10.31219/osf.io/xsu4p
  37. 37Peng, G and the International FAIR-DQI Community Guidelines Working Group. 2021c. Developing Community Guidelines for FAIR Dataset Quality Information. OGC Data Quality Domain Working Group Meeting, March 22, 2021. Virtual.
  38. 38Peng, G, Downs, R, Ramapriyan, HK, Moroni, D and Wei, Y. 2021d. Introducing Community Guidelines for FAIR Dataset Quality Information. AU/NZ Data Quality Interest Group-ESIP IQC Meeting, March 31, 2021. Virtual.
  39. 39Peng, G, Lacagnina, C, Ivánová, I and others. 2021e. Global Community Effort on Sharing Dataset Quality Information. Barcelona Supercomputing Center Evaluation and Quality Control Workshop. June 6, 2021. Virtual.
  40. 40Peng, G and the International FAIR-DQI Community Guidelines Working Group. 2021f. FAIR Dataset Quality Information. October 19, 2021. SciDataCon 2021, Virtual.
  41. 41Peng, G and the International FAIR-DQI Community Guidelines Working Group. 2021g. Developing Community Guidelines to Promote Global Access to and Harmonization of Quality Information of Individual Earth Science Datasets. October 21, 2021. CEOS WGISS #52 Meeting, Virtual.
  42. 42Peng, G, Wyborn, L, Downs, RR, Ramapriyan, HK, Ivánová, I, Lacagnina, C and Wu, M. 2021h. Representing and Communicating Data Quality Information. Session. November 3, 3021. RDA 18th Plenary. Virtual. https://www.rd-alliance.org/representing-and-communicating-data-quality-information.
  43. 43Peng, G, Lacagnina, C, Ivánová, I, Downs, RR, Ramapriyan, HK, Wyborn, L, Wu, M and others. 2021i. Making Dataset Quality Information FAIR – Guidelines for Sharing and Reusing Quality Information of Individual Earth Science Datasets. Nov 3, 2021. RDA 18th Plenary, Virtual.
  44. 44Peng, G, Milan, A, Ritchey, N, Partee II, RP, Zinn, S, McQuinn, Lemieux, PE, III, Ionin, R, Collins, D, Jones, P, Jakositz, A, and Casey, KS. 2019a. Practical application of a stewardship maturity matrix for the NOAA OneStop Program. Data Science Journal, 18. DOI: 10.5334/dsj-2019-041
  45. 45Peng, G, Privette, JL, Kearns, EJ, Ritchey, NA and Ansari, S. 2015. A unified framework for measuring stewardship practices applied to digital environmental datasets. Data Science Journal, 13: 231253. DOI: 10.2481/dsj.14-049
  46. 46Peng, G, Wright, W, Baddour, O, Lief, C and the SMM-CD Work Group. 2019b. The Guidance Booklet on the WMO-Wide Stewardship Maturity Matrix for Climate Data. Figshare. DOI: 10.6084/m9.figshare.7002482
  47. 47Popp, T, Hegglin, MI, Hollmann, R, Ardhuin, F, Bartsch, A and others. 2020. Consistency of satellite climate data records for Earth system monitoring. BAMS. DOI: 10.1175/BAMS-D-19-0127.1
  48. 48RDA FAIR Data Maturity Model Working Group. 2020. FAIR Data Maturity Model: specification and guidelines. DOI: 10.15497/rda00050
  49. 49Ramapriyan, H, Downs, R, Peng, G and Wei, Y. 2021. The State of Documenting and Reporting Data and Information Quality for Supporting Open Science, Session 285. SciDataCon 2021, https://www.scidatacon.org/virtual-2021/sessions/285/.
  50. 50Ramapriyan, H, Peng, G, Moroni, D and Shie, C-L. 2017. Ensuring and improving information quality for Earth science data and products. D-Lib Magazine, 23. DOI: 10.1045/july2017-ramapriyan
  51. 51Redman, CT. 1996. Data quality of the information age. Artech House, Boston. 303 pp.
  52. 52Ritchey, N. 2020. NOAA/NCEI Data Stewardship Maturity Assessment. Pre-ESIP Workshop, 13 July 2020, Virtual. DOI: 10.6084/m9.figshare.12711929
  53. 53Schulz, J. 2020. System Maturity and Application Performance for Climate Data Record. Pre-ESIP Workshop, 13 July 2020, Virtual. DOI: 10.6084/m9.figshare.12711875
  54. 54W3C (World Wide Web Consortium). 2020. Data Catalog Vocabulary (DCAT), Version 2. Available at: https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset.
  55. 55Wagner, M, Henzen, C, and Müller-Pfefferkorn, R. 2021. A research data infrastructure component for the automated metadata and data quality extraction to foster the provision of FAIR data in Earth system sciences. AGILE GIScience Ser., 2: 41. DOI: 10.5194/agile-giss-2-41-2021
  56. 56Wang, RY and Strong, DM. 1996. Beyond accuracy: What data quality means to consumers. Journal of Management Information Systems, 12(4): 5. DOI: 10.1080/07421222.1996.11518099
  57. 57Wei, Y, Moroni, D, Ramapriyan, H, Downs, RR, Liu, Z, Scott, D and NASA ESDSWG. 2020. NASA ESDSWG Data Quality Working Group. Pre-ESIP Workshop, 13 July 2020, Virtual. DOI: 10.6084/m9.figshare.12711962
  58. 58Wenger-Trayner, E and Wenger-Trayner, B. 2015. Introduction to communities of practice. Available at: https://wenger-trayner.com/introduction-to-communities-of-practice.
  59. 59Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A and others. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
  60. 60Woo, LM and Gourcuff, C. 2021. Delayed Mode QA/QC Best Practice Manual Version 3.0. Integrated Marine Observing System. DOI: 10.26198/5c997b5fdc9bd
  61. 61Wu, F, Cornillon, P, Boussidi, B and Guan, L. 2017. Determining the pixel-to-pixel uncertainty in satellite-derived SST fields. Journal of Remote Sensing, 9(9). DOI: 10.3390/rs9090877
  62. 62Wyborn, L, Wu, M, Ivánová, I, Bastrakova, I, Peng, G, Wei, Y, Moroni, D and Downs, RR. 2021. International Efforts to Develop Community Guidelines for FAIR Quality Information of Earth Science Datasets. 2021 Australia Collaborative Conference on Computational & Data Intensive Science (C3DIS). 5–9 July 2021. Virtual.
  63. 63Zhou, L, Divakarla, M and Liu, X. 2016. An overview of the joint polar satellite system (JPSS) science data product calibration and validation. Remote Sensing, 8. DOI: 10.3390/rs8020139
Language: English
Submitted on: Jan 3, 2022
Accepted on: Feb 28, 2022
Published on: Mar 31, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Ge Peng, Carlo Lacagnina, Robert R. Downs, Anette Ganske, Hampapuram K. Ramapriyan, Ivana Ivánová, Lesley Wyborn, Dave Jones, Lucy Bastin, Chung-lin Shie, David F. Moroni, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.