Have a personal or library account? Click to login
Recommendations for Discipline-Specific FAIRness Evaluation Derived from Applying an Ensemble of Evaluation Tools Cover

Recommendations for Discipline-Specific FAIRness Evaluation Derived from Applying an Ensemble of Evaluation Tools

Open Access
|Mar 2022

References

  1. ANDS. 2021. FAIR data self-assessment tool. https://www.ands-nectar-rds.org.au/fair-tool, accessed: 2022-02-01.
  2. Austin, C, Cousijn, H, Diepenbroek, M, Petters, J, Soares, E and Silva, M. 2019. WDS/RDA Assessment of Data Fitness for Use WG Outputs and Recommendations. DOI: 10.15497/rda00034
  3. Bahim, C, Casorrán-Amilburu, C, Dekkers, M, Herczog, E, Loozen, N, Repanas, K, Russell, K and Stall, S. 2020. The FAIR Data Maturity Model: An Approach to Harmonise FAIR Assessments. Data Sci. J., 19: 41. DOI: 10.5334/dsj-2020-041
  4. Bahim, C, Dekkers, M and Wyns, B. 2019. Results of an Analysis of Existing FAIR assessment tools. DOI: 10.15497/RDA00035
  5. Balaji, V, Taylor, KE, Juckes, M, Lawrence, BN, Durack, PJ, Lautenschlager, M, Blanton, C, Cinquini, L, Denvil, S, Elkington, M, Guglielmo, F, Guilyardi, E, Hassell, D, Kharin, S, Kindermann, S, Nikonov, S, Radhakrishnan, A, Stockhause, M, Weigel, T and Williams, D. 2018. Requirements for a global data infrastructure in support of CMIP6. Geosci. Model Dev., 11: 36593680. DOI: 10.5194/gmd-11-3659-2018
  6. Bugbee, K, le Roux, J, Sisco, A, Kaulfus, A, Staton, P, Woods, C, Dixon, V, Lynnes, C and Ramachandran, R. 2021. Improving Discovery and Use of NASA’s Earth Observation Data Through Metadata Quality Assessments. Data Science Journal, 20: 17. DOI: 10.5334/dsj-2021-017
  7. CCSDS. 2012. Reference Model for an Open Archival Information System (OAIS), Recommended Practice, CCSDS 650.0-M-2 (Magenta Book), Issue 2, CCSDS Secretariat, Space Communications and Navigation Office, 7L70 Space Operations Mission Directorate, NASA Headquarters, Washington, DC, 20546-0001, USA. Available at https://public.ccsds.org/Pubs/650x0m2.pdf, accessed 2021-06-14,.
  8. Cinquini, L, Crichton, D, Mattmann, C, Harney, J, Shipman, G, Wang, F, Ananthakrishnan, R, Miller, N, Denvil, S, Morgan, M, Pobre, Z, Bell, GM, Doutriaux, C, Drach, R, Williams, D, Kershaw, P, Pascoe, S, Gonzalez, E, Fiore, S and Schweitzer, R. 2014. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comp. Sy., 36: 400417. DOI: 10.1016/j.future.2013.07.002
  9. Clarke, DJ, Wang, L, Jones, A, Wojciechowicz, ML, Torre, D, Jagodnik, KM, Jenkins, SL, McQuilton, P, Flamholz, Z, Silverstein, MC, Schilder, BM, Robasky, K, Castillo, C, Idaszak, R, Ahalt, SC, Williams, J, Schurer, S, Cooper, DJ, de Miranda Azevedo, R, Klenk, JA, Haendel, MA, Nedzel, J, Avillach, P, Shimoyama, ME, Harris, RM, Gamble, M, Poten, R, Charbonneau, AL, Larkin, J, Brown, CT, Bonazzi, VR, Dumontier, MJ, Sansone, SA and Ma’ayan, A. 2019. FAIRshake: Toolkit to Evaluate the FAIRness of Research Digital Resources. Cell Systems, 9: 417421. DOI: 10.1016/j.cels.2019.09.011
  10. Coen, G, Steinhoff, W, Tykhonov, V, Bernal, I, Aguilar, F, Azevedo, A, Bernardo, S and EOSC-SYNERGY. 2020. EOSC-SYNERGY. EU DELIVERABLE: D3.3 Intermediate report on technical framework for FAIR principles implementation. DOI: 10.20350/digitalCSIC/12608
  11. David, R, Mabile, L, Yahia, M, Cambon-Thomsen, A, Archambeau, A-S, Bezuidenhout, L, Bekaert, S, Bertier, G, Bravo, E, Carpenter, J, Cohen-Nabeiro, A, Delavaud, A, De Rosa, M, Dollé, L, Grattarola, F, Murphy, F, Pamerlon, S, Specht, A, Tassé, A-M, Thomsen, M and Zilioli, M. 2018. Comment opérationnaliser et évaluer la prise en compte du concept “FAIR” dans le partage des données: vers une grille simplifiée d’évaluation du respect des critères FAIR. DOI: 10.5281/zenodo.1995646
  12. Devaraju, A and Huber, R. 2020. F-UJI – An Automated FAIR Data Assessment Tool. DOI: 10.5281/zenodo.4063720
  13. Devaraju, A, Huber, R, Mokrane, M, Herterich, P, Cepinskas, L, de Vries, J, L’Hours, H, Davidson, J and White, A. 2020. FAIRsFAIR Data Object Assessment Metrics. DOI: 10.5281/zenodo.4081213
  14. Devaraju, A, Mokrane, M, Cepinskas, L, Huber, R, Herterich, P, de Vries, J, Akerman, V, L’Hours, H, Davidson, J and Diepenbroek, M. 2021. From Conceptualization to Implementation: FAIR Assessment of Research Data Objects. Data Sci. J, 20: 4. DOI: 10.5334/dsj-2021-004
  15. Dillo, I and de Leeuw, L. 2018. CoreTrustSeal, Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen & Bibliothekare, 71: 162170. DOI: 10.31263/voebm.v71i1.1981
  16. Dunn, R, Lief, C, Peng, G, Wright, W, Baddour, O, Donat, M, Dubuisson, B, Legeais, J-F, Siegmund, P, Silveira, R, Wang, XL and Ziese, M. 2021. Stewardship maturity assessment tools for modernization of climate data management. Data Sci. J., 20: 7. DOI: 10.5334/dsj-2021-007
  17. Eaton, B, Gregory, J, Drach, B, Taylor, K, Hankin, S, Caron, J, Signell, R, Bentley, P, Rappa, G, Höck, H, Pamment, A, Juckes, M, Raspaud, M, Horne, R, Whiteaker, T, Blodgett, D, Zender, C and Lee, D. 2003. NetCDF Climate and Forecast (CF) metadata conventions. URL: http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.pdf.
  18. Evans, B, Druken, K, Wang, J, Yang, R, Richards, C and Wyborn, L. 2017. A Data Quality Strategy to Enable FAIR, Programmatic Access across Large, Diverse Data Collections for High Performance Data Analysis. Informatics, 4: 45. DOI: 10.3390/informatics4040045
  19. Eyring, V, Bony, S, Meehl, GA, Senior, CA, Stevens, B, Stouffer, RJ and Taylor, KE. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9: 19371958. DOI: 10.5194/gmd-9-1937-2016
  20. Fankhauser, E, de Vries, J, Westzaan, N and Åkerman, V. 2019. SATFYD: Self-Assessment Tool to Improve the FAIRness of Your Dataset. https://satifyd.dans.knaw.nl accessed: 2022-02-01.
  21. Ganske, A, Heydebreck, D, Höck, H, Kraft, A, Quaas, J and Kaiser, A. 2020. A short guide to increase FAIRness of atmospheric model data. Meteorol. Z, 29: 483491. DOI: 10.1127/metz/2020/1042
  22. Ganske, A, Kraft, A, Kaiser, A, Heydebreck, D, Lammert, A, Höck, H, Thiemann, H, Voss, V, Grawe, D, Leitl, B, Schlünzen, KH, Kretzschmar, J and Quaas, J. 2021. ATMODAT Standard (v3.0). World Data Center for Climate (WDCC) at DKRZ. DOI: 10.35095/WDCC/atmodat_standard_en_v3_0
  23. Genova, F, Aronsen, JM, Beyan, O, Harrower, N, Holl, A, Hooft, RW, Principe, P, Slavec, A and Jones, S. 2021. Recommendations on FAIR metrics for EOSC. Publications Office of the European Union. DOI: 10.2777/70791
  24. Giorgi, F, Jones, C and Asrar, GR. 2009. Addressing climate information needs at the regional level: The CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58: 175.
  25. Heinzeller, D, Dieng, D, Smiatek, G, Olusegun, C, Klein, C, Hamann, I and Kunstmann, H. 2017. WASCAL WRF60km with MPI-ESM MR r1i1p1 forcing from the CMIP5 historical experiment. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/WRF60_MPIESM_HIST
  26. Höck, H, Toussaint, F and Thiemann, H. 2020. Fitness for Use of Data Objects Described with Quality Maturity Matrix at Different Phases of Data Production. Data Sci. J., 19: 45. DOI: 10.5334/dsj-2020-045
  27. Jacobsen, A, de Miranda Azevedo, R, Juty, NS, Batista, D, Coles, SJ, Cornet, R, Courtot, M, Crosas, M, Dumontier, M, Evelo, CTA, Goble, CA, Guizzardi, G, Hansen, KK, Hasnain, A, Hettne, KM, Heringa, J, Hooft, RWW, Imming, M, Jeffery, KG, Kaliyaperumal, R, Kersloot, MG, Kirkpatrick, CR, Kuhn, T, Labastida, I, Magagna, B, McQuilton, P, Meyers, N, Montesanti, A, van Reisen, M, Rocca-Serra, P, Pergl, R, Sansone, S-A, da Silva Santos, LOB, Schneider, J, Strawn, GO, Thompson, M, Waagmeester, A, Weigel, T, Wilkinson, MD, Willighagen, EL, Wittenburg, P, Roos, M, Mons, B and Schultes, E. 2020. FAIR principles: Interpretations and implementation considerations. Data Intelligence, 2: 1029. DOI: 10.1162/dint_r_00024
  28. Jungclaus, J and Esch, M. 2009. mil0021: MPI-M Earth System Modelling Framework: Millennium full forcing experiment using solar forcing of Bard. World Data Center for Climate (WDCC) at DKRZ. URL http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=mil0021.
  29. Klepp, C, Michel, S, Protat, A, Burdanowitz, J, Albern, N, Louf, V, Bakan, S, Dahl, A and Thiele, T. 2017. Ocean Rainfall And Ice-phase precipitation measurement Network – OceanRAIN-W. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/OceanRAIN-W
  30. Kruk, J. 2013. Good scientific practice and ethical principles in scientific research and higher education. Central European Journal of Sport Sciences and Medicine, 1: 2529.
  31. L’Hours, H, von Stein, I, Huigen, F, Devaraju, A, Mokrane, M, Davidson, J, de Vries, J, Herterich, P, Cepinskas, L and Huber, R. 2020. CoreTrustSeal plus FAIR Overview. DOI: 10.5281/zenodo.4003630
  32. Meehl, G, Covey, C, Delworth, T, Latif, M, McAvaney, B, Mitchell, J, Stouffer, R and Taylor, K. 2007. The WCRP CMIP3 multi-model dataset: A new era in climate change research. B. Am. Meteorol. Soc., 88: 13831394. DOI: 10.1175/BAMS-88-9-1383
  33. Meyer, E, Scholz, R and Tinz, B. 2021. Reconstruction of the 1906 Storm Tide in the German Bright using TRIM-NP, FES2004, and DWD weather data. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.26050/WDCC/storm_tide_1906_DWD_reconstruct
  34. Mokrane, M and Recker, J. 2019. CoreTrustSeal–certified repositories: Enabling Findable, Accessible, Interoperable, and Reusable (FAIR) Data. DOI: 10.17605/OSF.IO/9DA2X, iPRES 2019; Conference date: 16-09-2019 through 20-09-2019.
  35. Mons, B, Neylon, C, Velterop, J, Dumontier, M, da Silva Santos, LOB and Wilkinson, MD. 2017. Cloudy, increasingly FAIR: Revisiting the FAIR Data guiding principles for the European Open Science Cloud. Information Services & Use, 37: 4956. DOI: 10.3233/ISU-170824
  36. Mülmenstädt, J, Sourdeval, O, Henderson, DS, L’Ecuyer, TS, Unglaub, C, Jungandreas, L, Böhm, C, Russell, LM and Quaas, J. 2018. Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/CBASE
  37. Murphy, F, Bar-Sinai, M and Martone, ME. 2021. A tool for assessing alignment of biomedical data repositories with open, FAIR, citation and trustworthy principles. PLOS ONE, 16: 122. DOI: 10.1371/journal.pone.0253538
  38. Peng, G, Privette, JL, Kearns, EJ, Ritchey, NA and Ansari, S. 2015. A Unified Framework for Measuring Stewardship Practices Applied to Digital Environmental Datasets. Data Sci. J., 13: 231253. DOI: 10.2481/dsj.14-049
  39. Peng, G, Wright, W, Baddour, O, Lief, C and Group, TS-CW. 2020. The WMO Stewardship Maturity Matrix for Climate Data (SMM-CD). figshare. Dataset. DOI: 10.6084/m9.figshare.7006028.v11
  40. Pergl, R, Hooft, RWW, Suchánek, M, Knaisl, V and Slifka, J. 2019. “Data StewardshipWizard”: A Tool Bringing Together Researchers, Data Stewards, and Data Experts around Data Management Planning. Data Sci. J., 18: 59. DOI: 10.5334/dsj-2019-059
  41. Peters, K, Höck, H and Thiemann, H. 2020. FAIR long-term preservation of climate and Earth System Science data with focus on reusability at the World Data Center for Climate (WDCC). Earth and Space Science Open Archive, 13. DOI: 10.1002/essoar.10501879.1
  42. Peters-von Gehlen, K. 2021. F-UJI evaluation output for the paper “Recommendations for discipline-specific FAIRness evaluation derived from applying an ensemble of evaluation tools”. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.35095/WDCC/F-UJI_results_WDCC
  43. Peters-von Gehlen, K and Höck, H. 2021. Data underlying the publication “Recommendations for discipline-specific FAIRness evaluation derived from applying an ensemble of evaluation tools”. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.35095/WDCC/Results_from_FAIRness_eval
  44. Petrie, R, Denvil, S, Ames, S, Levavasseur, G, Fiore, S, Allen, C, Antonio, F, Berger, K, Bretonnie`re, P-A, Cinquini, L, Dart, E, Dwarakanath, P, Druken, K, Evans, B, Franchistéguy, L, Gardoll, S, Gerbier, E, Greenslade, M, Hassell, D, Iwi, A, Juckes, M, Kindermann, S, Lacinski, L, Mirto, M, Nasser, AB, Nassisi, P, Nienhouse, E, Nikonov, S, Nuzzo, A, Richards, C, Ridzwan, S, Rixen, M, Serradell, K, Snow, K, Stephens, A, Stockhause, M, Vahlenkamp, H and Wagner, R. 2021. Coordinating an operational data distribution network for CMIP6 data. Geosci. Model Dev, 14: 629644. DOI: 10.5194/gmd-14-629-2021
  45. Pronk, TE. 2019. The time efficiency gain in sharing and reuse of research data. Data Sci. J., 18: 10. DOI: 10.5334/dsj-2019-010
  46. Schweitzer, M, Levett, K, Russell, K, White, A and Unsworth, K. 2021. auresearch/FAIR-Data-Assessment-Tool: Release v1.0. DOI: 10.5281/zenodo.4971127
  47. Seifert, P. 2020. HD(CP)2 short-term observation data of Cloudnet products. HOPE campaign by LACROS.
  48. Steger, C, Schupfner, M, Wieners, K-H, Wachsmann, F, Bittner, M, Jungclaus, J, Früh, B, Pankatz, K, Giorgetta, M, Reick, C, Legutke, S, Esch, M, Gayler, V, Haak, H, de Vrese, P, Raddatz, T, Mauritsen, T, von Storch, J-S, Behrens, J, Brovkin, V, Claussen, M, Crueger, T, Fast, I, Fiedler, S, Hagemann, S, Hohenegger, C, Jahns, T, Kloster, S, Kinne, S, Lasslop, G, Kornblueh, L, Marotzke, J, Matei, D, Meraner, K, Mikolajewicz, U, Modali, K, Müller, W, Nabel, J, Notz, D, Peters, K, Pincus, R, Pohlmann, H, Pongratz, J, Rast, S, Schmidt, H, Schnur, R, Schulzweida, U, Six, K, Stevens, B, Voigt, A and Roeckner, E. 2020. CMIP6 ScenarioMIP DWD MPI-ESM1-2-HR ssp585 r2i1p1f1 – RCM-forcing data. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.26050/WDCC/RCM_CMIP6_SSP585-HR_r2i1p1f1
  49. Stendel, M, Schmith, T, Roeckner, E and Cubasch, U. 2004. ECHAM4 OPYC SRES A2: 110 YEARS COUPLED A2 RUN 6H VALUES. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/EH4_OPYC_SRES_A2
  50. Stendel, M, Schmith, T, Roeckner, E and Cubasch, U. 2005. EH4 OPYC SRES A2 APRS. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/EH4_OPYC_SRES_A2_APRS
  51. Stockhause, M, Höck, H, Toussaint, F and Lautenschlager, M. 2012. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data. Geosci. Model Dev., 5: 10231032. DOI: 10.5194/gmd-5-1023-2012
  52. Stockhause, M and Lautenschlager, M. 2017. CMIP6 data citation of evolving data. Data Science Journal, 16. DOI: 10.5334/dsj-2017-030
  53. Taylor, KE, Stouffer, RJ and Meehl, GA. 2012. An overview of CMIP5 and the experiment design. B. Am. Meteorol. Soc., 93: 485498. DOI: 10.1175/BAMS-D-11-00094.1
  54. Tebaldi, C and Knutti, R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philos. T. Roy. Soc. A., 365: 20532075. DOI: 10.1098/rsta.2007.2076
  55. The MM-Serv Working Group. 2018. MM-Serv_ESIP_2018sum_v2r1_20180709.pdf. DOI: 10.6084/m9.figshare.6855020.v1
  56. Thomas, E. 2017. FAIR data assessment tool. https://blog.ukdataservice.ac.uk/fair-data-assessment-tool/ accessed: 2021-02-01.
  57. WDCC. 2016. CERA2 Metadata Submission Guide, https://cera-www.dkrz.de/docs/CERA2MetadataSubmissionGuide.pdf accessed: 2021-06-09.
  58. Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJ, Groth, P, Goble, C, Grethe, JS, Heringa, J, ’t Hoen, PA, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data, 3: 19. DOI: 10.1038/sdata.2016.18
  59. Wilkinson, MD, Dumontier, M, Sansone, S-A, da Silva Santos, LOB, Prieto, M, Batista, D, McQuilton, P, Kuhn, T, Rocca-Serra, P, Crosas, M and Schultes, E. 2019. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Sci. Data, 6: 112. DOI: 10.1038/s41597-019-0184-5
  60. Wilkinson, MD, Dumontier, M, Sansone, S-A, da Silva Santos, LOB, Prieto, M, McQuilton, P, Gautier, J, Murphy, D, Crosas, M and Schultes, E. 2018a. Evaluating FAIR-Compliance Through an Objective, Automated, Community-Governed Framework. bioRxiv. DOI: 10.1101/418376
  61. Wilkinson, MD, Sansone, S-A, Schultes, E, Doorn, P, Santos, LOBDS and Dumontier, M. 2018b. A design framework and exemplar metrics for FAIRness. Sci. Data, 5: 118. DOI: 10.1038/sdata.2018.118
  62. Wimalaratne, S and Ulrich, R. 2020. M4.7 Improved Description of Data Repositories (1.0). Zenodo. DOI: 10.5281/zenodo.5471811
  63. Wu, M, Psomopoulos, F, Khalsa, SJ and de Waard, A. 2019. Data discovery paradigms: User Requirements and Recommendations for Data Repositories. Data Sci. J., 18: 3. DOI: 10.5334/dsj-2019-003
  64. Yu, J and Cox, S. 2017. 5-Star Data Rating Tool. v5. CSIRO. Software Collection. DOI: 10.4225/08/5a12348f8567b
Language: English
Submitted on: Sep 3, 2021
|
Accepted on: Feb 11, 2022
|
Published on: Mar 24, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Karsten Peters-von Gehlen, Heinke Höck, Andrej Fast, Daniel Heydebreck, Andrea Lammert, Hannes Thiemann, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.