References
- ANDS. 2021. FAIR data self-assessment tool.
https://www.ands-nectar-rds.org.au/fair-tool , accessed: 2022-02-01. - Austin, C, Cousijn, H, Diepenbroek, M, Petters, J, Soares, E and Silva, M. 2019. WDS/RDA Assessment of Data Fitness for Use WG Outputs and Recommendations. DOI: 10.15497/rda00034
- Bahim, C, Casorrán-Amilburu, C, Dekkers, M, Herczog, E, Loozen, N, Repanas, K, Russell, K and Stall, S. 2020. The FAIR Data Maturity Model: An Approach to Harmonise FAIR Assessments. Data Sci. J., 19: 41. DOI: 10.5334/dsj-2020-041
- Bahim, C, Dekkers, M and Wyns, B. 2019. Results of an Analysis of Existing FAIR assessment tools. DOI: 10.15497/RDA00035
- Balaji, V, Taylor, KE, Juckes, M, Lawrence, BN, Durack, PJ, Lautenschlager, M, Blanton, C, Cinquini, L, Denvil, S, Elkington, M, Guglielmo, F, Guilyardi, E, Hassell, D, Kharin, S, Kindermann, S, Nikonov, S, Radhakrishnan, A, Stockhause, M, Weigel, T and Williams, D. 2018. Requirements for a global data infrastructure in support of CMIP6. Geosci. Model Dev., 11: 3659–3680. DOI: 10.5194/gmd-11-3659-2018
- Bugbee, K, le Roux, J, Sisco, A, Kaulfus, A, Staton, P, Woods, C, Dixon, V, Lynnes, C and Ramachandran, R. 2021. Improving Discovery and Use of NASA’s Earth Observation Data Through Metadata Quality Assessments. Data Science Journal, 20: 17. DOI: 10.5334/dsj-2021-017
- CCSDS. 2012.
Reference Model for an Open Archival Information System (OAIS), Recommended Practice, CCSDS 650.0-M-2 (Magenta Book) , Issue 2, CCSDS Secretariat, Space Communications and Navigation Office, 7L70 Space Operations Mission Directorate, NASA Headquarters, Washington, DC, 20546-0001, USA. Available athttps://public.ccsds.org/Pubs/650x0m2.pdf , accessed 2021-06-14,. - Cinquini, L, Crichton, D, Mattmann, C, Harney, J, Shipman, G, Wang, F, Ananthakrishnan, R, Miller, N, Denvil, S, Morgan, M, Pobre, Z, Bell, GM, Doutriaux, C, Drach, R, Williams, D, Kershaw, P, Pascoe, S, Gonzalez, E, Fiore, S and Schweitzer, R. 2014. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comp. Sy., 36: 400–417. DOI: 10.1016/j.future.2013.07.002
- Clarke, DJ, Wang, L, Jones, A, Wojciechowicz, ML, Torre, D, Jagodnik, KM, Jenkins, SL, McQuilton, P, Flamholz, Z, Silverstein, MC, Schilder, BM, Robasky, K, Castillo, C, Idaszak, R, Ahalt, SC, Williams, J, Schurer, S, Cooper, DJ, de Miranda Azevedo, R, Klenk, JA, Haendel, MA, Nedzel, J, Avillach, P, Shimoyama, ME, Harris, RM, Gamble, M, Poten, R, Charbonneau, AL, Larkin, J, Brown, CT, Bonazzi, VR, Dumontier, MJ, Sansone, SA and Ma’ayan, A. 2019. FAIRshake: Toolkit to Evaluate the FAIRness of Research Digital Resources. Cell Systems, 9: 417–421. DOI: 10.1016/j.cels.2019.09.011
- Coen, G, Steinhoff, W, Tykhonov, V, Bernal, I, Aguilar, F, Azevedo, A, Bernardo, S and EOSC-SYNERGY. 2020. EOSC-SYNERGY. EU DELIVERABLE: D3.3 Intermediate report on technical framework for FAIR principles implementation. DOI: 10.20350/digitalCSIC/12608
- David, R, Mabile, L, Yahia, M, Cambon-Thomsen, A, Archambeau, A-S, Bezuidenhout, L, Bekaert, S, Bertier, G, Bravo, E, Carpenter, J, Cohen-Nabeiro, A, Delavaud, A, De Rosa, M, Dollé, L, Grattarola, F, Murphy, F, Pamerlon, S, Specht, A, Tassé, A-M, Thomsen, M and Zilioli, M. 2018. Comment opérationnaliser et évaluer la prise en compte du concept “FAIR” dans le partage des données: vers une grille simplifiée d’évaluation du respect des critères FAIR. DOI: 10.5281/zenodo.1995646
- Devaraju, A and Huber, R. 2020. F-UJI – An Automated FAIR Data Assessment Tool. DOI: 10.5281/zenodo.4063720
- Devaraju, A, Huber, R, Mokrane, M, Herterich, P, Cepinskas, L, de Vries, J, L’Hours, H, Davidson, J and White, A. 2020. FAIRsFAIR Data Object Assessment Metrics. DOI: 10.5281/zenodo.4081213
- Devaraju, A, Mokrane, M, Cepinskas, L, Huber, R, Herterich, P, de Vries, J, Akerman, V, L’Hours, H, Davidson, J and Diepenbroek, M. 2021. From Conceptualization to Implementation: FAIR Assessment of Research Data Objects. Data Sci. J, 20: 4. DOI: 10.5334/dsj-2021-004
- Dillo, I and de Leeuw, L. 2018. CoreTrustSeal, Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen & Bibliothekare, 71: 162–170. DOI: 10.31263/voebm.v71i1.1981
- Dunn, R, Lief, C, Peng, G, Wright, W, Baddour, O, Donat, M, Dubuisson, B, Legeais, J-F, Siegmund, P, Silveira, R, Wang, XL and Ziese, M. 2021. Stewardship maturity assessment tools for modernization of climate data management. Data Sci. J., 20: 7. DOI: 10.5334/dsj-2021-007
- Eaton, B, Gregory, J, Drach, B, Taylor, K, Hankin, S, Caron, J, Signell, R, Bentley, P, Rappa, G, Höck, H, Pamment, A, Juckes, M, Raspaud, M, Horne, R, Whiteaker, T, Blodgett, D, Zender, C and Lee, D. 2003. NetCDF Climate and Forecast (CF) metadata conventions. URL:
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.pdf . - Evans, B, Druken, K, Wang, J, Yang, R, Richards, C and Wyborn, L. 2017. A Data Quality Strategy to Enable FAIR, Programmatic Access across Large, Diverse Data Collections for High Performance Data Analysis. Informatics, 4: 45. DOI: 10.3390/informatics4040045
- Eyring, V, Bony, S, Meehl, GA, Senior, CA, Stevens, B, Stouffer, RJ and Taylor, KE. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9: 1937–1958. DOI: 10.5194/gmd-9-1937-2016
- Fankhauser, E, de Vries, J, Westzaan, N and Åkerman, V. 2019. SATFYD: Self-Assessment Tool to Improve the FAIRness of Your Dataset.
https://satifyd.dans.knaw.nl accessed: 2022-02-01. - Ganske, A, Heydebreck, D, Höck, H, Kraft, A, Quaas, J and Kaiser, A. 2020. A short guide to increase FAIRness of atmospheric model data. Meteorol. Z, 29: 483–491. DOI: 10.1127/metz/2020/1042
- Ganske, A, Kraft, A, Kaiser, A, Heydebreck, D, Lammert, A, Höck, H, Thiemann, H, Voss, V, Grawe, D, Leitl, B, Schlünzen, KH, Kretzschmar, J and Quaas, J. 2021.
ATMODAT Standard (v3.0) . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.35095/WDCC/atmodat_standard_en_v3_0 - Genova, F, Aronsen, JM, Beyan, O, Harrower, N, Holl, A, Hooft, RW, Principe, P, Slavec, A and Jones, S. 2021.
Recommendations on FAIR metrics for EOSC . Publications Office of the European Union. DOI: 10.2777/70791 - Giorgi, F, Jones, C and Asrar, GR. 2009. Addressing climate information needs at the regional level: The CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58: 175.
- Heinzeller, D, Dieng, D, Smiatek, G, Olusegun, C, Klein, C, Hamann, I and Kunstmann, H. 2017.
WASCAL WRF60km with MPI-ESM MR r1i1p1 forcing from the CMIP5 historical experiment . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/WRF60_MPIESM_HIST - Höck, H, Toussaint, F and Thiemann, H. 2020. Fitness for Use of Data Objects Described with Quality Maturity Matrix at Different Phases of Data Production. Data Sci. J., 19: 45. DOI: 10.5334/dsj-2020-045
- Jacobsen, A, de Miranda Azevedo, R, Juty, NS, Batista, D, Coles, SJ, Cornet, R, Courtot, M, Crosas, M, Dumontier, M, Evelo, CTA, Goble, CA, Guizzardi, G, Hansen, KK, Hasnain, A, Hettne, KM, Heringa, J, Hooft, RWW, Imming, M, Jeffery, KG, Kaliyaperumal, R, Kersloot, MG, Kirkpatrick, CR, Kuhn, T, Labastida, I, Magagna, B, McQuilton, P, Meyers, N, Montesanti, A, van Reisen, M, Rocca-Serra, P, Pergl, R, Sansone, S-A, da Silva Santos, LOB, Schneider, J, Strawn, GO, Thompson, M, Waagmeester, A, Weigel, T, Wilkinson, MD, Willighagen, EL, Wittenburg, P, Roos, M, Mons, B and Schultes, E. 2020. FAIR principles: Interpretations and implementation considerations. Data Intelligence, 2: 10–29. DOI: 10.1162/dint_r_00024
- Jungclaus, J and Esch, M. 2009.
mil0021: MPI-M Earth System Modelling Framework: Millennium full forcing experiment using solar forcing of Bard . World Data Center for Climate (WDCC) at DKRZ. URLhttp://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=mil0021 . - Klepp, C, Michel, S, Protat, A, Burdanowitz, J, Albern, N, Louf, V, Bakan, S, Dahl, A and Thiele, T. 2017.
Ocean Rainfall And Ice-phase precipitation measurement Network – OceanRAIN-W . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/OceanRAIN-W - Kruk, J. 2013. Good scientific practice and ethical principles in scientific research and higher education. Central European Journal of Sport Sciences and Medicine, 1: 25–29.
- L’Hours, H, von Stein, I, Huigen, F, Devaraju, A, Mokrane, M, Davidson, J, de Vries, J, Herterich, P, Cepinskas, L and Huber, R. 2020. CoreTrustSeal plus FAIR Overview. DOI: 10.5281/zenodo.4003630
- Meehl, G, Covey, C, Delworth, T, Latif, M, McAvaney, B, Mitchell, J, Stouffer, R and Taylor, K. 2007. The WCRP CMIP3 multi-model dataset: A new era in climate change research. B. Am. Meteorol. Soc., 88: 1383–1394. DOI: 10.1175/BAMS-88-9-1383
- Meyer, E, Scholz, R and Tinz, B. 2021. Reconstruction of the 1906 Storm Tide in the German Bright using TRIM-NP, FES2004, and DWD weather data. World Data Center for Climate (WDCC) at DKRZ. DOI: 10.26050/WDCC/storm_tide_1906_DWD_reconstruct
- Mokrane, M and Recker, J. 2019. CoreTrustSeal–certified repositories: Enabling Findable, Accessible, Interoperable, and Reusable (FAIR) Data. DOI: 10.17605/OSF.IO/9DA2X, iPRES 2019; Conference date: 16-09-2019 through 20-09-2019.
- Mons, B, Neylon, C, Velterop, J, Dumontier, M, da Silva Santos, LOB and Wilkinson, MD. 2017. Cloudy, increasingly FAIR: Revisiting the FAIR Data guiding principles for the European Open Science Cloud. Information Services & Use, 37: 49–56. DOI: 10.3233/ISU-170824
- Mülmenstädt, J, Sourdeval, O, Henderson, DS, L’Ecuyer, TS, Unglaub, C, Jungandreas, L, Böhm, C, Russell, LM and Quaas, J. 2018.
Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/CBASE - Murphy, F, Bar-Sinai, M and Martone, ME. 2021. A tool for assessing alignment of biomedical data repositories with open, FAIR, citation and trustworthy principles. PLOS ONE, 16: 1–22. DOI: 10.1371/journal.pone.0253538
- Peng, G, Privette, JL, Kearns, EJ, Ritchey, NA and Ansari, S. 2015. A Unified Framework for Measuring Stewardship Practices Applied to Digital Environmental Datasets. Data Sci. J., 13: 231–253. DOI: 10.2481/dsj.14-049
- Peng, G, Wright, W, Baddour, O, Lief, C and Group, TS-CW. 2020. The WMO Stewardship Maturity Matrix for Climate Data (SMM-CD). figshare. Dataset. DOI: 10.6084/m9.figshare.7006028.v11
- Pergl, R, Hooft, RWW, Suchánek, M, Knaisl, V and Slifka, J. 2019. “Data StewardshipWizard”: A Tool Bringing Together Researchers, Data Stewards, and Data Experts around Data Management Planning. Data Sci. J., 18: 59. DOI: 10.5334/dsj-2019-059
- Peters, K, Höck, H and Thiemann, H. 2020. FAIR long-term preservation of climate and Earth System Science data with focus on reusability at the World Data Center for Climate (WDCC). Earth and Space Science Open Archive, 13. DOI: 10.1002/essoar.10501879.1
- Peters-von Gehlen, K. 2021.
F-UJI evaluation output for the paper “Recommendations for discipline-specific FAIRness evaluation derived from applying an ensemble of evaluation tools” . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.35095/WDCC/F-UJI_results_WDCC - Peters-von Gehlen, K and Höck, H. 2021.
Data underlying the publication “Recommendations for discipline-specific FAIRness evaluation derived from applying an ensemble of evaluation tools” . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.35095/WDCC/Results_from_FAIRness_eval - Petrie, R, Denvil, S, Ames, S, Levavasseur, G, Fiore, S, Allen, C, Antonio, F, Berger, K, Bretonnie`re, P-A, Cinquini, L, Dart, E, Dwarakanath, P, Druken, K, Evans, B, Franchistéguy, L, Gardoll, S, Gerbier, E, Greenslade, M, Hassell, D, Iwi, A, Juckes, M, Kindermann, S, Lacinski, L, Mirto, M, Nasser, AB, Nassisi, P, Nienhouse, E, Nikonov, S, Nuzzo, A, Richards, C, Ridzwan, S, Rixen, M, Serradell, K, Snow, K, Stephens, A, Stockhause, M, Vahlenkamp, H and Wagner, R. 2021. Coordinating an operational data distribution network for CMIP6 data. Geosci. Model Dev, 14: 629–644. DOI: 10.5194/gmd-14-629-2021
- Pronk, TE. 2019. The time efficiency gain in sharing and reuse of research data. Data Sci. J., 18: 10. DOI: 10.5334/dsj-2019-010
- Schweitzer, M, Levett, K, Russell, K, White, A and Unsworth, K. 2021. auresearch/FAIR-Data-Assessment-Tool: Release v1.0. DOI: 10.5281/zenodo.4971127
- Seifert, P. 2020.
HD(CP)2 short-term observation data of Cloudnet products . HOPE campaign by LACROS. - Steger, C, Schupfner, M, Wieners, K-H, Wachsmann, F, Bittner, M, Jungclaus, J, Früh, B, Pankatz, K, Giorgetta, M, Reick, C, Legutke, S, Esch, M, Gayler, V, Haak, H, de Vrese, P, Raddatz, T, Mauritsen, T, von Storch, J-S, Behrens, J, Brovkin, V, Claussen, M, Crueger, T, Fast, I, Fiedler, S, Hagemann, S, Hohenegger, C, Jahns, T, Kloster, S, Kinne, S, Lasslop, G, Kornblueh, L, Marotzke, J, Matei, D, Meraner, K, Mikolajewicz, U, Modali, K, Müller, W, Nabel, J, Notz, D, Peters, K, Pincus, R, Pohlmann, H, Pongratz, J, Rast, S, Schmidt, H, Schnur, R, Schulzweida, U, Six, K, Stevens, B, Voigt, A and Roeckner, E. 2020.
CMIP6 ScenarioMIP DWD MPI-ESM1-2-HR ssp585 r2i1p1f1 – RCM-forcing data . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.26050/WDCC/RCM_CMIP6_SSP585-HR_r2i1p1f1 - Stendel, M, Schmith, T, Roeckner, E and Cubasch, U. 2004.
ECHAM4 OPYC SRES A2: 110 YEARS COUPLED A2 RUN 6H VALUES . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/EH4_OPYC_SRES_A2 - Stendel, M, Schmith, T, Roeckner, E and Cubasch, U. 2005.
EH4 OPYC SRES A2 APRS . World Data Center for Climate (WDCC) at DKRZ. DOI: 10.1594/WDCC/EH4_OPYC_SRES_A2_APRS - Stockhause, M, Höck, H, Toussaint, F and Lautenschlager, M. 2012. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data. Geosci. Model Dev., 5: 1023–1032. DOI: 10.5194/gmd-5-1023-2012
- Stockhause, M and Lautenschlager, M. 2017. CMIP6 data citation of evolving data. Data Science Journal, 16. DOI: 10.5334/dsj-2017-030
- Taylor, KE, Stouffer, RJ and Meehl, GA. 2012. An overview of CMIP5 and the experiment design. B. Am. Meteorol. Soc., 93: 485–498. DOI: 10.1175/BAMS-D-11-00094.1
- Tebaldi, C and Knutti, R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philos. T. Roy. Soc. A., 365: 2053–2075. DOI: 10.1098/rsta.2007.2076
- The MM-Serv Working Group. 2018. MM-Serv_ESIP_2018sum_v2r1_20180709.pdf. DOI: 10.6084/m9.figshare.6855020.v1
- Thomas, E. 2017. FAIR data assessment tool.
https://blog.ukdataservice.ac.uk/fair-data-assessment-tool/ accessed: 2021-02-01. - WDCC. 2016. CERA2 Metadata Submission Guide,
https://cera-www.dkrz.de/docs/CERA2MetadataSubmissionGuide.pdf accessed: 2021-06-09. - Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJ, Groth, P, Goble, C, Grethe, JS, Heringa, J, ’t Hoen, PA, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data, 3: 1–9. DOI: 10.1038/sdata.2016.18
- Wilkinson, MD, Dumontier, M, Sansone, S-A, da Silva Santos, LOB, Prieto, M, Batista, D, McQuilton, P, Kuhn, T, Rocca-Serra, P, Crosas, M and Schultes, E. 2019. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Sci. Data, 6: 1–12. DOI: 10.1038/s41597-019-0184-5
- Wilkinson, MD, Dumontier, M, Sansone, S-A, da Silva Santos, LOB, Prieto, M, McQuilton, P, Gautier, J, Murphy, D, Crosas, M and Schultes, E. 2018a. Evaluating FAIR-Compliance Through an Objective, Automated, Community-Governed Framework. bioRxiv. DOI: 10.1101/418376
- Wilkinson, MD, Sansone, S-A, Schultes, E, Doorn, P, Santos, LOBDS and Dumontier, M. 2018b. A design framework and exemplar metrics for FAIRness. Sci. Data, 5: 118. DOI: 10.1038/sdata.2018.118
- Wimalaratne, S and Ulrich, R. 2020. M4.7 Improved Description of Data Repositories (1.0). Zenodo. DOI: 10.5281/zenodo.5471811
- Wu, M, Psomopoulos, F, Khalsa, SJ and de Waard, A. 2019. Data discovery paradigms: User Requirements and Recommendations for Data Repositories. Data Sci. J., 18: 3. DOI: 10.5334/dsj-2019-003
- Yu, J and Cox, S. 2017.
5-Star Data Rating Tool. v5 . CSIRO. Software Collection. DOI: 10.4225/08/5a12348f8567b
