References
- 1Abitbol, JL and Karsai, M. 2020. Interpretable socioeconomic status inference from aerial imagery through urban patterns. Nat Mach Intell, 2: 684–692. DOI: 10.1038/s42256-020-00243-5
- 2Abreu, MVS, Oliveira, JC, de, Andrade, VDA and Meira, AD. 2011. Proposta metodológica para o cálculo e análise espacial do IDH intraurbano de Viçosa–MG. Revista Brasileira de Estudos de População, 28: 169–186. DOI: 10.1590/S0102-30982011000100009
- 3Ayush, K, Uzkent, B, Burke, M, Lobell, D and Ermon, S. 2020. Generating Interpretable Poverty Maps using Object Detection in Satellite Images. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. DOI: 10.24963/ijcai.2020/608
- 4Bishop, CM. 2006. Pattern recognition and machine learning, Information science and statistics. New York: Springer. ISBN-10: 0-387-31073-8–ISBN-13: 978-0387-31073-2. DOI: 10.1126/science.abe8628
- 5Burke, M, Driscoll, A, Lobell, DB and Ermon, S. 2021. Using satellite imagery to understand and promote sustainable development. Science, 371:
eabe8628 . DOI: 10.1126/science.abe8628 - 6Bueno, GW, Leonardo, AFG, Machado, LP, Brande, MR, Godoy, EM and David, FS. 2020. Indicadores de sustentabilidade socioambiental de pisciculturas familiares em área de Mata Atlântica, no Vale do Ribeira–SP. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(3): 901–910. Epub July 06, 2020. DOI: 10.1590/1678-4162-11389
- 7Dai, L, Zheng, C, Dong, Z, Yao, Y, Wang, R, Zhang, X, Ren, S, Zhang, J, Song, X and Guan, Q. 2021. Analyzing the correlation between visual space and residents’ psychology in Wuhan, China using street-view images and deep-learning technique. City and Environment Interactions, 11:
100069 . DOI: 10.1016/j.cacint.2021.100069 - 8Dias, RL and de Oliveira, RC. 2015. Caracterização socioeconômica e mapeamento do uso e ocupação da terra do litoral sul do estado de São Paulo. Sociedade & Natureza, 27: 111–123. DOI: 10.1590/1982-451320150108
- 9Diou, C, Lelekas, P and Delopoulos, A. 2018. Image-Based Surrogates of Socio-Economic Status in Urban Neighborhoods Using Deep Multiple Instance Learning. J. Imaging, 4: 125. DOI: 10.3390/jimaging4110125
- 10Franch-Pardo, I, Napoletano, BM, Rosete-Verges, F and Billa, L. 2020. Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 739. DOI: 10.1016/j.scitotenv.2020.140033
- 11Gebru, T, Krause, J, Wang, Y, Chen, D, Deng, J and Fei-Fei, L. 2017. Fine-Grained Car Detection for Visual Census Estimation.
https://arxiv.org/abs/1709.02480 . - 12Jean, N, Burke, M, Xie, M, Davis, WM, Lobell, DB and Ermon, S. 2016. Combining satellite imagery and machine learning to predict poverty. Science, 353: 790–794. DOI: 10.1126/science.aaf7894
- 13Johnson, JM and Khoshgoftaar, TM. 2019. Survey on deep learning with class imbalance. J Big Data, 6: 27. DOI: 10.1186/s40537-019-0192-5
- 14Li, Xuhong, Xiong, H, Li, Xingjian, Wu, X, Zhang, X, Liu, J, Bian, J and Dou, D. 2021. Interpretable Deep Learning: Interpretation, Interpretability, Trustworthiness, and Beyond. arXiv:2103.10689 [cs].
- 15Mendes, Á, Louvison, MCP, Ianni, AMZ, Leite, MG, Feuerwerker, LCM, Tanaka, OY, Duarte, L, Weiller, JAB., Lara, NCC, Botelho, L de AM and Almeida, CAL. 2015. O processo de construção da gestão regional da saúde no estado de São Paulo: subsídios para a análise. Saúde e Sociedade, 24: 423–437. DOI: 10.1590/S0104-12902015000200003
- 16National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and Replicability in Science. Washington, DC: The National Academies Press. DOI: 10.17226/25303
- 17Russakovsky, O, Deng, J, Su, H, Krause, J, Satheesh, S, Ma, S, Huang, Z, Karpathy, A, Khosla, A, Bernstein, M, Berg, AC and Fei-Fei, L. 2015. ImageNet Large Scale Visual Recognition Challenge. DOI: 10.1007/s11263-015-0816-y
- 18Simonyan, K and Zisserman, A. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition.
https://arxiv.org/abs/1409.1556 . - 19Stall, S, Specht, A, Corrêa, PLP, David, R, Edmunds, R, Mabile, L, … and Wyborn, L. 2020. PARSEC Data and Digital Output Management Plan and Workbook. Zenodo. DOI: 10.5281/zenodo.3891426
- 20Statistical Office of the European Union. 2017.
Final report of the expert group on quality of life indicators: 2017 edition . Publications Office, LU. DOI: 10.2785/021270 - 21Stiglitz, JE, Sen, A and Fitoussi, J-P. 2009. Report by the Commission on the Measurement of Economic and Social Progress.
https://www.economie.gouv.fr/files/finances/presse/dossiers_de_presse/090914mesure_perf_eco_progres_social/synthese_ang.pdf (accessed 17th April 2021). - 22Suel, E, Polak, JW, Bennett, JE and Ezzati, M. 2019. Measuring social, environmental and health inequalities using deep learning and street imagery. Sci Rep, 9: 6229. DOI: 10.1038/s41598-019-42036-w
- 23Tetila, EC, Machado, BB, Astolfi, G, de Souza Belete, NA, Amorim, WP, Roel, AR and Pistori, H. 2020. Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, 179:
105836 . DOI: 10.1016/j.compag.2020.105836 - 24United Nations Department of Economic and Social Affairs. 2015. Sustainable Development Goals, THE 17 GOALS | Sustainable Development (accessed March 2021).
- 25Wilkinson, MD, Dumontier, M, Aalbersberg, IjJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJG, Groth, P, Goble, C, Grethe, JS, Heringa, J, ’t Hoen, PAC, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 3:
160018 . DOI: 10.1038/sdata.2016.18 - 26Xie, M, Jean, N, Burke, M, Lobell, D and Ermon, S. 2016. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping.
https://arxiv.org/abs/1510.00098 . - 27Yosinski, J, Clune, J, Bengio, Y and Lipson, H. 2014. How transferable are features in deep neural networks?
https://arxiv.org/abs/1411.1792 . - 28Zhuang, F, Qi, Z, Duan, K, Xi, D, Zhu, Y, Zhu, H, Xiong, H and He, Q. 2021. A Comprehensive Survey on Transfer Learning. Proc. IEEE, 109: 43–76. DOI: 10.1109/JPROC.2020.3004555
