Have a personal or library account? Click to login
A Deep-Learning Method for the Prediction of Socio-Economic Indicators from Street-View Imagery Using a Case Study from Brazil Cover

A Deep-Learning Method for the Prediction of Socio-Economic Indicators from Street-View Imagery Using a Case Study from Brazil

Open Access
|Feb 2022

References

  1. 1Abitbol, JL and Karsai, M. 2020. Interpretable socioeconomic status inference from aerial imagery through urban patterns. Nat Mach Intell, 2: 684692. DOI: 10.1038/s42256-020-00243-5
  2. 2Abreu, MVS, Oliveira, JC, de, Andrade, VDA and Meira, AD. 2011. Proposta metodológica para o cálculo e análise espacial do IDH intraurbano de Viçosa–MG. Revista Brasileira de Estudos de População, 28: 169186. DOI: 10.1590/S0102-30982011000100009
  3. 3Ayush, K, Uzkent, B, Burke, M, Lobell, D and Ermon, S. 2020. Generating Interpretable Poverty Maps using Object Detection in Satellite Images. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. DOI: 10.24963/ijcai.2020/608
  4. 4Bishop, CM. 2006. Pattern recognition and machine learning, Information science and statistics. New York: Springer. ISBN-10: 0-387-31073-8–ISBN-13: 978-0387-31073-2. DOI: 10.1126/science.abe8628
  5. 5Burke, M, Driscoll, A, Lobell, DB and Ermon, S. 2021. Using satellite imagery to understand and promote sustainable development. Science, 371: eabe8628. DOI: 10.1126/science.abe8628
  6. 6Bueno, GW, Leonardo, AFG, Machado, LP, Brande, MR, Godoy, EM and David, FS. 2020. Indicadores de sustentabilidade socioambiental de pisciculturas familiares em área de Mata Atlântica, no Vale do Ribeira–SP. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(3): 901910. Epub July 06, 2020. DOI: 10.1590/1678-4162-11389
  7. 7Dai, L, Zheng, C, Dong, Z, Yao, Y, Wang, R, Zhang, X, Ren, S, Zhang, J, Song, X and Guan, Q. 2021. Analyzing the correlation between visual space and residents’ psychology in Wuhan, China using street-view images and deep-learning technique. City and Environment Interactions, 11: 100069. DOI: 10.1016/j.cacint.2021.100069
  8. 8Dias, RL and de Oliveira, RC. 2015. Caracterização socioeconômica e mapeamento do uso e ocupação da terra do litoral sul do estado de São Paulo. Sociedade & Natureza, 27: 111123. DOI: 10.1590/1982-451320150108
  9. 9Diou, C, Lelekas, P and Delopoulos, A. 2018. Image-Based Surrogates of Socio-Economic Status in Urban Neighborhoods Using Deep Multiple Instance Learning. J. Imaging, 4: 125. DOI: 10.3390/jimaging4110125
  10. 10Franch-Pardo, I, Napoletano, BM, Rosete-Verges, F and Billa, L. 2020. Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 739. DOI: 10.1016/j.scitotenv.2020.140033
  11. 11Gebru, T, Krause, J, Wang, Y, Chen, D, Deng, J and Fei-Fei, L. 2017. Fine-Grained Car Detection for Visual Census Estimation. https://arxiv.org/abs/1709.02480.
  12. 12Jean, N, Burke, M, Xie, M, Davis, WM, Lobell, DB and Ermon, S. 2016. Combining satellite imagery and machine learning to predict poverty. Science, 353: 790794. DOI: 10.1126/science.aaf7894
  13. 13Johnson, JM and Khoshgoftaar, TM. 2019. Survey on deep learning with class imbalance. J Big Data, 6: 27. DOI: 10.1186/s40537-019-0192-5
  14. 14Li, Xuhong, Xiong, H, Li, Xingjian, Wu, X, Zhang, X, Liu, J, Bian, J and Dou, D. 2021. Interpretable Deep Learning: Interpretation, Interpretability, Trustworthiness, and Beyond. arXiv:2103.10689 [cs].
  15. 15Mendes, Á, Louvison, MCP, Ianni, AMZ, Leite, MG, Feuerwerker, LCM, Tanaka, OY, Duarte, L, Weiller, JAB., Lara, NCC, Botelho, L de AM and Almeida, CAL. 2015. O processo de construção da gestão regional da saúde no estado de São Paulo: subsídios para a análise. Saúde e Sociedade, 24: 423437. DOI: 10.1590/S0104-12902015000200003
  16. 16National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and Replicability in Science. Washington, DC: The National Academies Press. DOI: 10.17226/25303
  17. 17Russakovsky, O, Deng, J, Su, H, Krause, J, Satheesh, S, Ma, S, Huang, Z, Karpathy, A, Khosla, A, Bernstein, M, Berg, AC and Fei-Fei, L. 2015. ImageNet Large Scale Visual Recognition Challenge. DOI: 10.1007/s11263-015-0816-y
  18. 18Simonyan, K and Zisserman, A. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. https://arxiv.org/abs/1409.1556.
  19. 19Stall, S, Specht, A, Corrêa, PLP, David, R, Edmunds, R, Mabile, L, … and Wyborn, L. 2020. PARSEC Data and Digital Output Management Plan and Workbook. Zenodo. DOI: 10.5281/zenodo.3891426
  20. 20Statistical Office of the European Union. 2017. Final report of the expert group on quality of life indicators: 2017 edition. Publications Office, LU. DOI: 10.2785/021270
  21. 21Stiglitz, JE, Sen, A and Fitoussi, J-P. 2009. Report by the Commission on the Measurement of Economic and Social Progress. https://www.economie.gouv.fr/files/finances/presse/dossiers_de_presse/090914mesure_perf_eco_progres_social/synthese_ang.pdf (accessed 17th April 2021).
  22. 22Suel, E, Polak, JW, Bennett, JE and Ezzati, M. 2019. Measuring social, environmental and health inequalities using deep learning and street imagery. Sci Rep, 9: 6229. DOI: 10.1038/s41598-019-42036-w
  23. 23Tetila, EC, Machado, BB, Astolfi, G, de Souza Belete, NA, Amorim, WP, Roel, AR and Pistori, H. 2020. Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, 179: 105836. DOI: 10.1016/j.compag.2020.105836
  24. 24United Nations Department of Economic and Social Affairs. 2015. Sustainable Development Goals, THE 17 GOALS | Sustainable Development (accessed March 2021).
  25. 25Wilkinson, MD, Dumontier, M, Aalbersberg, IjJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJG, Groth, P, Goble, C, Grethe, JS, Heringa, J, ’t Hoen, PAC, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 3: 160018. DOI: 10.1038/sdata.2016.18
  26. 26Xie, M, Jean, N, Burke, M, Lobell, D and Ermon, S. 2016. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. https://arxiv.org/abs/1510.00098.
  27. 27Yosinski, J, Clune, J, Bengio, Y and Lipson, H. 2014. How transferable are features in deep neural networks? https://arxiv.org/abs/1411.1792.
  28. 28Zhuang, F, Qi, Z, Duan, K, Xi, D, Zhu, Y, Zhu, H, Xiong, H and He, Q. 2021. A Comprehensive Survey on Transfer Learning. Proc. IEEE, 109: 4376. DOI: 10.1109/JPROC.2020.3004555
Language: English
Submitted on: Apr 22, 2021
Accepted on: Jan 29, 2022
Published on: Feb 11, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Jeaneth Machicao, Alison Specht, Danton Vellenich, Leandro Meneguzzi, Romain David, Shelley Stall, Katia Ferraz, Laurence Mabile, Margaret O’Brien, Pedro Corrêa, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.