Have a personal or library account? Click to login
A Framework for Data-Driven Solutions with COVID-19 Illustrations Cover

A Framework for Data-Driven Solutions with COVID-19 Illustrations

Open Access
|Nov 2021

References

  1. Bartik, AW, Bertrand, M, Cullen, Z, Glaeser, EL, Luca, M and Stanton, C. 2020. The impact of covid-19 on small business outcomes and expectations, 117(30): 1765617666. DOI: 10.1073/pnas.2006991117
  2. Bo, L, Wang, L and Jiao, L. 2006. Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation. Neural Computation, 18(4): 961978. DOI: 10.1162/neco.2006.18.4.961
  3. Bontempi, E, Vergalli, S and Squazzoni, F. 2020. Understanding covid-19 diffusion requires an interdisciplinary, multi-dimensional approach. Environmental Research, 188: 109814. URL: https://www.sciencedirect.com/science/article/pii/S001393512030709X. DOI: 10.1016/j.envres.2020.109814
  4. Cai, L and Zhu, Y. 2015. The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14(2): 110. DOI: 10.5334/dsj-2015-002
  5. Cohen, JP, Morrison, P and Dao, L. 2020. Covid-19 image data collection. arXiv 2003.11597. URL: https://github.com/ieee8023/covid-chestxray-dataset.
  6. CRC. 2021. Coronavirus Resource Center. URL: https://coronavirus.jhu.edu/.
  7. ECDC. 2020. Covid-19 data. URL: https://www.ecdc.europa.eu/en/publications-data.
  8. Fukushima, K. 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36: 193202. DOI: 10.1007/BF00344251
  9. Galkin, F, Aliper, A, Putin, E, Kuznetsov, I, Gladyshev, VN and Zhavoronkov, A. 2018. Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. DOI: 10.1101/507780
  10. Géron, A. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O’Reilly Media, Inc.
  11. Grattarola, D and Alippi, C. 2020. Graph Neural Networks in Tensorflow and Keras with Spektral. DOI: 10.1109/MCI.2020.3039072
  12. IISD. 2021. Covid-19 Wreaking Havoc on Bangladesh’s Poor: A Story of Food, Cash, and Health Crises. URL: https://sdg.iisd.org.
  13. Kaggle. 2020. Chest x-ray images (pneumonia). URL: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.
  14. Kharrazi, A. 2017. Challenges and opportunities of urban big-data for sustainable development. Asia-Pacific Tech Monitor, 34(4): 1721.
  15. Krizhevsky, A, Sutskever, I and Hinton, GE. 2012. Imagenet classification with deep convolutional neural networks. In: Pereira, F, Burges, CJC, Bottou, L and Weinberger, KQ (eds.), Advances in Neural Information Processing Systems 25, 10971105. Curran Associates, Inc. URL: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
  16. Kruse, CS, Goswamy, R, Raval, Y and Marawi, S. 2016. Challenges and opportunities of big data in health care: A systematic review. JMIR Medical Informatics, 4(4): e38. DOI: 10.2196/medinform.5359
  17. LeCun, Y, Boser, B, Denker, JS, Henderson, D, Howard, RE, Hubbard, W and Jackel, LD. 1989. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4): 541551. DOI: 10.1162/neco.1989.1.4.541
  18. LeCun, Y, Jackel, LD, Boser, B, Denker, JS, Graf, HP, Guyon, I, Henderson, D, Howard, RE and Hubbard, W. 1989. Handwritten digit recognition: Applications of neural net chips and automatic learning. IEEE Communication, 4146. Invited paper. DOI: 10.1109/35.41400
  19. Matheus, R, Janssen, M and Maheshwari, D. 2020. Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Government Information Quarterly, 37(3): 101284. DOI: 10.1016/j.giq.2018.01.006
  20. MI. 2021. isdg: Integrayed Simulation Tool. URL: https://www.millennium-institute.org/isdg.
  21. Mwitondi, K, Munyakazi, I and Gatsheni, B. 2018a. Amenability of the united nations sustainable development goals to big data modelling. International Workshop on Data Science-Present and Future of Open Data and Open Science, 12–15 Nov 2018, Joint Support Centre for Data Science Research, Mishima Citizens Cultural Hall, Mishima, Shizuoka, Japan.
  22. Mwitondi, K, Munyakazi, I and Gatsheni, B. 2018b. An interdisciplinary data-driven framework for development science. Dirisa National Research Data Workshop, Csir Icc, 19–21 June 2018, Pretoria, RSA.
  23. Mwitondi, K, Munyakazi, I and Gatsheni, B. 2020. A robust machine learning approach to sdg data segmentation. Journal of Big Data, 7(97). DOI: 10.1186/s40537-020-00373-y
  24. Mwitondi, KS, Moustafa, RE and Hadi, AS. 2013. A data-driven method for selecting optimal models based on graphical visualisation of differences in sequentially fitted roc model parameters. Data Science Journal, 12: WDS247WDS253. DOI: 10.2481/dsj.WDS-045
  25. Mwitondi, KS and Said, RA. 2013. A data-based method for harmonising heterogeneous data modelling techniques across data mining applications. Journal of Statistics Applications & Probability, 2(3): 293305. DOI: 10.12785/jsap/020312
  26. Mwitondi, KS and Said, RA. 2021. Dealing with Randomness and Concept Drift in Large Datasets. Data, 6(7). URL: https://www.mdpi.com/2306-5729/6/7/77. DOI: 10.3390/data6070077
  27. Mwitondi, KS, Said, RA and Zargari, SA. 2019. A robust domain partitioning intrusion detection method. Journal of Information Security and Applications, 48: 102360. URL: http://www.sciencedirect.com/science/article/pii/S2214212617305823. DOI: 10.1016/j.jisa.2019.102360
  28. ONS. 2020. Office for national statistics. URL: https://www.ons.gov.uk/.
  29. Pan, SL and Zhang, S. 2020. From fighting covid-19 pandemic to tackling sustainable development goals: An opportunity for responsible information systems research. International Journal of Information Management, 102196. URL: http://www.sciencedirect.com/science/article/pii/S0268401220311154. DOI: 10.1016/j.ijinfomgt.2020.102196
  30. Pearce, W, Mahony, M and Raman, S. 2018. Science advice for global challenges: Learning from trade-offs in the ipcc. Environmental Science & Policy, 80: 125131. URL: https://www.sciencedirect.com/science/article/pii/S1462901117310298. DOI: 10.1016/j.envsci.2017.11.017
  31. Ramsetty, A and Adams, C. 2020. Impact of the digital divide in the age of covid-19. Journal of the American Medical Informatics Association, 27: 11471148. DOI: 10.1093/jamia/ocaa078
  32. Rawat, J, Logofătu, D and Chiramel, S. 2020. Factors affecting accuracy of convolutional neural network using vgg-16. In: Iliadis, L, Angelov, PP, Jayne, C and Pimenidis, E (eds.), Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference, 251260. Cham: Springer International Publishing. DOI: 10.1007/978-3-030-48791-1_19
  33. Roser, M, Ortiz-Ospina, E, Ritchie, H, Hasell, J and Gavrilov, D. 2018. Our world in data: Research and interactive data visualizations to understand the world’s largest problems.
  34. Rothan, HA and Byrareddy, SN. 2020. The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. Journal of Autoimmunity, 109: 102433. URL: http://www.sciencedirect.com/science/article/pii/S0896841120300469. DOI: 10.1016/j.jaut.2020.102433
  35. Said, RA and Mwitondi, KS. 2021. An Integrated Clustering Method for Pedagogical Performance. Array, 11: 100064. URL: https://www.sciencedirect.com/science/article/pii/S2590005621000126. DOI: 10.1016/j.array.2021.100064
  36. Tsymbal, A, Pechenizkiy, M, Cunningham, P and Puuronen, S. 2008. Dynamic integration of classifiers for handling concept drift. Information Fusion, 9(1): 5668. Special Issue on Applications of Ensemble Methods. URL: http://www.sciencedirect.com/science/article/pii/S1566253506001138. DOI: 10.1016/j.inffus.2006.11.002
  37. United-Nations. 2015. Sustainable development goals. URL: https://www.un.org/sustainabledevelopment/sustainable-development-goals/.
  38. Wang, CJ, Ng, CY and Brook, RH. 2020. Response to covid-19 in Taiwan: Big Data Analytics, new technology, and proactive testing, 323(14): 13411342. DOI: 10.1001/jama.2020.3151
  39. Wang, H, Chong, D, Huang, D and Zou, Y. 2019. What affects the performance of convolutional neural networks for audio event classification. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 140146. DOI: 10.1109/ACIIW.2019.8925277
  40. WBGroup. 2018. Atlas of sustainable development goals from world development indicators.
  41. Xu, X and Goodacre, R. 2018. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing, 2(3): 249262. DOI: 10.1007/s41664-018-0068-2
  42. Yan, M, Haiping, W, Lizhe, W, Bormin, H, Ranjan, R, Zomaya, A and Wei, J. 2015. Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems, 51: 4760. DOI: 10.1016/j.future.2014.10.029
  43. Zaki, M and Mera, W. 2020. Data Mining and Machine Learning Fundamental Concepts and Algorithms, second edn. Cambridge University Press. DOI: 10.1017/9781108564175
  44. Zambrano-Monserrate, MA, Ruano, MA and Sanchez-Alcalde, L. 2020. Indirect effects of covid-19 on the environment. Science of The Total Environment, 728: 138813. URL: http://www.sciencedirect.com/science/article/pii/S0048969720323305. DOI: 10.1016/j.scitotenv.2020.138813
  45. Zenisek, J, Holzinger, F and Affenzeller, M. 2019. Machine learning based concept drift detection for predictive maintenance. Computers & Industrial Engineering, 137: 106031. URL: https://www.sciencedirect.com/science/article/pii/S0360835219304905. DOI: 10.1016/j.cie.2019.106031
  46. Zhang, P, Xiong, F, Gao, J and Wang, J. 2017. Data quality in big data processing: Issues, solutions and open problems. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (Smart-World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 17. DOI: 10.1109/UIC-ATC.2017.8397554
  47. Zhang, R, Jayawardene, V, Indulska, M, Sadiq, S and Zhou, X. 2014. A data driven approach for discovering data quality requirements. In: Proceedings of ICIS – Decision Analytics, Big Data and Visualisation. URL: https://aisel.aisnet.org/icis2014/proceedings/DecisionAnalytics/13.
  48. Zhang, Z, Yang, Y, Xia, X, Lo, D, Ren, X and Grundy, J. 2021. Unveiling the Mystery of API Evolution in Deep Learning Frameworks: A Case Study of Tensorflow 2. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 238247. DOI: 10.1109/ICSE-SEIP52600.2021.00033
  49. žliobaitė, I, Pechenizkiy, M and Gama, J. 2016. An Overview of Concept Drift Applications, Springer International Publishing, Cham, 91114. DOI: 10.1007/978-3-319-26989-4_4
Language: English
Submitted on: Apr 8, 2021
|
Accepted on: Oct 26, 2021
|
Published on: Nov 18, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Kassim S. Mwitondi, Raed A. Said, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.