References
- Bartik, AW, Bertrand, M, Cullen, Z, Glaeser, EL, Luca, M and Stanton, C. 2020. The impact of covid-19 on small business outcomes and expectations, 117(30): 17656–17666. DOI: 10.1073/pnas.2006991117
- Bo, L, Wang, L and Jiao, L. 2006. Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation. Neural Computation, 18(4): 961–978. DOI: 10.1162/neco.2006.18.4.961
- Bontempi, E, Vergalli, S and Squazzoni, F. 2020. Understanding covid-19 diffusion requires an interdisciplinary, multi-dimensional approach. Environmental Research, 188: 109814. URL:
https://www.sciencedirect.com/science/article/pii/S001393512030709X . DOI: 10.1016/j.envres.2020.109814 - Cai, L and Zhu, Y. 2015. The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14(2): 1–10. DOI: 10.5334/dsj-2015-002
- Cohen, JP, Morrison, P and Dao, L. 2020. Covid-19 image data collection. arXiv 2003.11597. URL:
https://github.com/ieee8023/covid-chestxray-dataset . - CRC. 2021. Coronavirus Resource Center. URL:
https://coronavirus.jhu.edu/ . - ECDC. 2020. Covid-19 data. URL:
https://www.ecdc.europa.eu/en/publications-data . - Fukushima, K. 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36: 193–202. DOI: 10.1007/BF00344251
- Galkin, F, Aliper, A, Putin, E, Kuznetsov, I, Gladyshev, VN and Zhavoronkov, A. 2018. Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. DOI: 10.1101/507780
- Géron, A. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O’Reilly Media, Inc.
- Grattarola, D and Alippi, C. 2020. Graph Neural Networks in Tensorflow and Keras with Spektral. DOI: 10.1109/MCI.2020.3039072
- IISD. 2021. Covid-19 Wreaking Havoc on Bangladesh’s Poor: A Story of Food, Cash, and Health Crises. URL:
https://sdg.iisd.org . - Kaggle. 2020. Chest x-ray images (pneumonia). URL:
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia . - Kharrazi, A. 2017. Challenges and opportunities of urban big-data for sustainable development. Asia-Pacific Tech Monitor, 34(4): 17–21.
- Krizhevsky, A, Sutskever, I and Hinton, GE. 2012.
Imagenet classification with deep convolutional neural networks . In: Pereira, F, Burges, CJC, Bottou, L and Weinberger, KQ (eds.), Advances in Neural Information Processing Systems 25, 1097–1105. Curran Associates, Inc. URL:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf . - Kruse, CS, Goswamy, R, Raval, Y and Marawi, S. 2016. Challenges and opportunities of big data in health care: A systematic review. JMIR Medical Informatics, 4(4):
e38 . DOI: 10.2196/medinform.5359 - LeCun, Y, Boser, B, Denker, JS, Henderson, D, Howard, RE, Hubbard, W and Jackel, LD. 1989. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4): 541–551. DOI: 10.1162/neco.1989.1.4.541
- LeCun, Y, Jackel, LD, Boser, B, Denker, JS, Graf, HP, Guyon, I, Henderson, D, Howard, RE and Hubbard, W. 1989. Handwritten digit recognition: Applications of neural net chips and automatic learning. IEEE Communication, 41–46. Invited paper. DOI: 10.1109/35.41400
- Matheus, R, Janssen, M and Maheshwari, D. 2020. Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Government Information Quarterly, 37(3): 101–284. DOI: 10.1016/j.giq.2018.01.006
- MI. 2021. isdg: Integrayed Simulation Tool. URL:
https://www.millennium-institute.org/isdg . - Mwitondi, K, Munyakazi, I and Gatsheni, B. 2018a. Amenability of the united nations sustainable development goals to big data modelling. International Workshop on Data Science-Present and Future of Open Data and Open Science,
12–15 Nov 2018 ,Joint Support Centre for Data Science Research, Mishima Citizens Cultural Hall , Mishima, Shizuoka, Japan. - Mwitondi, K, Munyakazi, I and Gatsheni, B. 2018b. An interdisciplinary data-driven framework for development science. Dirisa National Research Data Workshop, Csir Icc,
19–21 June 2018 , Pretoria, RSA. - Mwitondi, K, Munyakazi, I and Gatsheni, B. 2020. A robust machine learning approach to sdg data segmentation. Journal of Big Data, 7(97). DOI: 10.1186/s40537-020-00373-y
- Mwitondi, KS, Moustafa, RE and Hadi, AS. 2013. A data-driven method for selecting optimal models based on graphical visualisation of differences in sequentially fitted roc model parameters. Data Science Journal, 12: WDS247–WDS253. DOI: 10.2481/dsj.WDS-045
- Mwitondi, KS and Said, RA. 2013. A data-based method for harmonising heterogeneous data modelling techniques across data mining applications. Journal of Statistics Applications & Probability, 2(3): 293–305. DOI: 10.12785/jsap/020312
- Mwitondi, KS and Said, RA. 2021. Dealing with Randomness and Concept Drift in Large Datasets. Data, 6(7). URL:
https://www.mdpi.com/2306-5729/6/7/77 . DOI: 10.3390/data6070077 - Mwitondi, KS, Said, RA and Zargari, SA. 2019. A robust domain partitioning intrusion detection method. Journal of Information Security and Applications, 48: 102360. URL:
http://www.sciencedirect.com/science/article/pii/S2214212617305823 . DOI: 10.1016/j.jisa.2019.102360 - ONS. 2020. Office for national statistics. URL:
https://www.ons.gov.uk/ . - Pan, SL and Zhang, S. 2020. From fighting covid-19 pandemic to tackling sustainable development goals: An opportunity for responsible information systems research. International Journal of Information Management, 102196. URL:
http://www.sciencedirect.com/science/article/pii/S0268401220311154 . DOI: 10.1016/j.ijinfomgt.2020.102196 - Pearce, W, Mahony, M and Raman, S. 2018. Science advice for global challenges: Learning from trade-offs in the ipcc. Environmental Science & Policy, 80: 125–131. URL:
https://www.sciencedirect.com/science/article/pii/S1462901117310298 . DOI: 10.1016/j.envsci.2017.11.017 - Ramsetty, A and Adams, C. 2020. Impact of the digital divide in the age of covid-19. Journal of the American Medical Informatics Association, 27: 1147–1148. DOI: 10.1093/jamia/ocaa078
- Rawat, J, Logofătu, D and Chiramel, S. 2020. Factors affecting accuracy of convolutional neural network using vgg-16. In: Iliadis, L, Angelov, PP, Jayne, C and Pimenidis, E (eds.), Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference, 251–260. Cham:
Springer International Publishing . DOI: 10.1007/978-3-030-48791-1_19 - Roser, M, Ortiz-Ospina, E, Ritchie, H, Hasell, J and Gavrilov, D. 2018. Our world in data: Research and interactive data visualizations to understand the world’s largest problems.
- Rothan, HA and Byrareddy, SN. 2020. The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. Journal of Autoimmunity, 109: 102433. URL:
http://www.sciencedirect.com/science/article/pii/S0896841120300469 . DOI: 10.1016/j.jaut.2020.102433 - Said, RA and Mwitondi, KS. 2021. An Integrated Clustering Method for Pedagogical Performance. Array, 11: 100064. URL:
https://www.sciencedirect.com/science/article/pii/S2590005621000126 . DOI: 10.1016/j.array.2021.100064 - Tsymbal, A, Pechenizkiy, M, Cunningham, P and Puuronen, S. 2008. Dynamic integration of classifiers for handling concept drift. Information Fusion, 9(1): 56–68. Special Issue on Applications of Ensemble Methods. URL:
http://www.sciencedirect.com/science/article/pii/S1566253506001138 . DOI: 10.1016/j.inffus.2006.11.002 - United-Nations. 2015. Sustainable development goals. URL:
https://www.un.org/sustainabledevelopment/sustainable-development-goals/ . - Wang, CJ, Ng, CY and Brook, RH. 2020. Response to covid-19 in Taiwan: Big Data Analytics, new technology, and proactive testing, 323(14): 1341–1342. DOI: 10.1001/jama.2020.3151
- Wang, H, Chong, D, Huang, D and Zou, Y. 2019. What affects the performance of convolutional neural networks for audio event classification. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 140–146. DOI: 10.1109/ACIIW.2019.8925277
- WBGroup. 2018. Atlas of sustainable development goals from world development indicators.
- Xu, X and Goodacre, R. 2018. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing, 2(3): 249–262. DOI: 10.1007/s41664-018-0068-2
- Yan, M, Haiping, W, Lizhe, W, Bormin, H, Ranjan, R, Zomaya, A and Wei, J. 2015. Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems, 51: 47–60. DOI: 10.1016/j.future.2014.10.029
- Zaki, M and Mera, W. 2020.
Data Mining and Machine Learning Fundamental Concepts and Algorithms , second edn. Cambridge University Press. DOI: 10.1017/9781108564175 - Zambrano-Monserrate, MA, Ruano, MA and Sanchez-Alcalde, L. 2020. Indirect effects of covid-19 on the environment. Science of The Total Environment, 728: 138813. URL:
http://www.sciencedirect.com/science/article/pii/S0048969720323305 . DOI: 10.1016/j.scitotenv.2020.138813 - Zenisek, J, Holzinger, F and Affenzeller, M. 2019. Machine learning based concept drift detection for predictive maintenance. Computers & Industrial Engineering, 137: 106031. URL:
https://www.sciencedirect.com/science/article/pii/S0360835219304905 . DOI: 10.1016/j.cie.2019.106031 - Zhang, P, Xiong, F, Gao, J and Wang, J. 2017. Data quality in big data processing: Issues, solutions and open problems. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (Smart-World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 1–7. DOI: 10.1109/UIC-ATC.2017.8397554
- Zhang, R, Jayawardene, V, Indulska, M, Sadiq, S and Zhou, X. 2014. A data driven approach for discovering data quality requirements. In: Proceedings of ICIS – Decision Analytics, Big Data and Visualisation. URL:
https://aisel.aisnet.org/icis2014/proceedings/DecisionAnalytics/13 . - Zhang, Z, Yang, Y, Xia, X, Lo, D, Ren, X and Grundy, J. 2021. Unveiling the Mystery of API Evolution in Deep Learning Frameworks: A Case Study of Tensorflow 2. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 238–247. DOI: 10.1109/ICSE-SEIP52600.2021.00033
- žliobaitė, I, Pechenizkiy, M and Gama, J. 2016.
An Overview of Concept Drift Applications , Springer International Publishing, Cham, 91–114. DOI: 10.1007/978-3-319-26989-4_4
