Have a personal or library account? Click to login
SwissEnvEO: A FAIR National Environmental Data Repository for Earth Observation Open Science Cover

SwissEnvEO: A FAIR National Environmental Data Repository for Earth Observation Open Science

Open Access
|May 2021

References

  1. 1Amorim, RC, Castro, JA, Rocha da Silva, J and Ribeiro, C. 2017. A comparison of research data management platforms: Architecture, flexible metadata and interoperability. Universal Access in the Information Society, 16(4): 851862. DOI: 10.1007/s10209-016-0475-y
  2. 2Anderson, K, Ryan, B, Sonntag, W, Kavvada, A and Friedl, L. 2017. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spatial Information Science, 120. DOI: 10.1080/10095020.2017.1333230
  3. 3Andries, A, Morse, S, Murphy, RJ, Lynch, J and Woolliams, ER. 2019. Seeing Sustainability from Space: Using Earth Observation Data to Populate the UN Sustainable Development Goal Indicators. Sustainability, 11(18): 5062. DOI: 10.3390/su11185062
  4. 4Andries, A, Morse, S, Murphy, R, Lynch, J, Woolliams, E and Fonweban, J. 2019. Translation of Earth observation data into sustainable development indicators: An analytical framework. Sustainable Development, 27(3): 366376. DOI: 10.1002/sd.1908
  5. 5Appel, M and Pebesma, E. 2019. On-Demand Processing of Data Cubes from Satellite Image Collections with the gdalcubes Library. Data, 4(3): 92. DOI: 10.3390/data4030092
  6. 6Ariza-Porras, C, Bravo, G, Villamizar, M, Moreno, A, Castro, H, Galindo, G, Cabera, E, Valbuena, S and Lozano, P. 2017. CDCol: A geoscience data cube that meets Colombian needs, 8799. DOI: 10.1007/978-3-319-66562-7_7
  7. 7Asmaryan, S, Muradyan, V, Tepanosyan, G, Hovsepyan, A, Saghatelyan, A, Astsatryan, H, Grigoryan, H, Abrahamyan, R, Guigoz, Y and Giuliani, G. 2019. Paving the Way towards an Armenian Data Cube. Data, 4(3): 117. DOI: 10.3390/data4030117
  8. 8Baumann, P. 2018. Datacube Standards and their Contribution to Analysis-Ready Data. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, 20512053. DOI: 10.1109/IGARSS.2018.8518994
  9. 9Baumann, P. 2019. From Sensor-Centric to User-Centric—When are data Analysis-Ready? IGARSS 2019– 2019 IEEE International Geoscience and Remote Sensing Symposium, 47794782. DOI: 10.1109/IGARSS.2019.8899773
  10. 10Baumann, P, Furtado, P, Ritsch, R and Widmann, N. 1997. The RasDaMan approach to multidimensional database management, 166173. DOI: 10.1145/331697.331732
  11. 11Baumann, P, Mazzetti, P, Ungar, J, Barbera, R, Barboni, D, Beccati, A, Bigagli, L, Boldrini, E, Bruno, R, Calanducci, A, Campalani, P, Clements, O, Dumitru, A, Grant, M, Herzig, P, Kakaletris, G, Laxton, J, Koltsida, P, Lipskoch, K, Wagner, S, et al. 2016. Big Data Analytics for Earth Sciences: The EarthServer approach. International Journal of Digital Earth, 9(1): 329. DOI: 10.1080/17538947.2014.1003106
  12. 12Baumann, P, Misev, D, Merticariu, V and Huu, BP. 2019. Datacubes: Towards Space/Time Analysis-Ready Data. In Service-Oriented Mapping, 269299. Cham: Springer. DOI: 10.1007/978-3-319-72434-8_14
  13. 13Bermudez, L. 2017. New frontiers on open standards for geo-spatial science. Geo-Spatial Information Science, 20(2): 126133. DOI: 10.1080/10095020.2017.1325613
  14. 14Breuer, A, Janetschek, H and Malerba, D. 2019. Translating Sustainable Development Goal (SDG) Interdependencies into Policy Advice. Sustainability, 11(7): 2092. DOI: 10.3390/su11072092
  15. 15Camara, G, Queiroz, G, Vinhas, L, Ferreira, K, Cartaxo, R, Simoes, R, Llapa, E, Assis, L and Sanchez, A. 2017. The E-Sensing Architecture for Big Earth Observation Data Analysis, 4851. DOI: 10.2760/383579
  16. 16Chatenoux, B, Richard, J-P, Small, D, Roeoesli, C, Windgate, V, Poussin, C, Rodila, D, Peduzzi, P, Steinmeier, C, Ginzler, C, Psomas, A, Schaepman, M and Giuliani, G. n.d. The Swiss Data Cube: Analysis Ready Data archive using Earth Observations of Switzerland. Scientific Data.
  17. 17Coetzee, S, Ivánová, I, Mitasova, H and Brovelli, MA. 2020. Open Geospatial Software and Data: A Review of the Current State and A Perspective into the Future. ISPRS International Journal of Geo-Information, 9(2): 90. DOI: 10.3390/ijgi9020090
  18. 18Curry, PA and Moosdorf, N. 2019. An open source web application for distributed geospatial data exploration. Scientific Data, 6(1): 190014. DOI: 10.1038/sdata.2019.14
  19. 19Denis, G, Claverie, A, Pasco, X, Darnis, J-P, de Maupeou, B, Lafaye, M and Morel, E. 2017. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts. Acta Astronautica, 137: 415433. DOI: 10.1016/j.actaastro.2017.04.034
  20. 20Dhu, T, Dunn, B, Lewis, B, Lymburner, L, Mueller, N, Telfer, E, Lewis, A, McIntyre, A, Minchin, S and Phillips, C. 2017. Digital earth Australia – unlocking new value from earth observation data. Big Earth Data, 1(1–2): 6474. DOI: 10.1080/20964471.2017.1402490
  21. 21Dhu, T, Giuliani, G, Juárez, J, Kavvada, A, Killough, B, Merodio, P, Minchin, S and Ramage, S. 2019. National Open Data Cubes and Their Contribution to Country-Level Development Policies and Practices. Data, 4(4): 144. DOI: 10.3390/data4040144
  22. 22Drusch, M, Del Bello, U, Carlier, S, Colin, O, Fernandez, V, Gascon, F, Hoersch, B, Isola, C, Laberinti, P, Martimort, P, Meygret, A, Spoto, F, Sy, O, Marchese, F and Bargellini, P. 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120: 2536. DOI: 10.1016/j.rse.2011.11.026
  23. 23Dwyer, J, Roy, D, Sauer, B, Jenkerson, C, Zhang, H and Lymburner, L. 2018. Analysis Ready Data: Enabling Analysis of the Landsat Archive. DOI: 10.20944/preprints201808.0029.v1
  24. 24Estoque, RC. 2020. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sensing, 12(11): 1770. DOI: 10.3390/rs12111770
  25. 25European Commission. 2007. Directive 2007/2/EC of the European Parliament and the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE), 14.
  26. 26European Commission. 2018. The DIAS: User-friendly Access to Copernicus Data and Information.
  27. 27Ferrari, T, Scardaci, D and Andreozzi, S. 2018. The Open Science Commons for the European Research Area. In Earth Observation Open Science and Innovation, 4367. Cham: Springer. DOI: 10.1007/978-3-319-65633-5_3
  28. 28Ferreira, KR, Queiroz, GR, Vinhas, L, Marujo, RFB, Simoes, REO, Picoli, MCA, Camara, G, Cartaxo, R, Gomes, VCF, Santos, LA, Sanchez, AH, Arcanjo, JS, Fronza, JG, Noronha, CA, Costa, RW, Zaglia, MC, Zioti, F, Korting, TS, Soares, AR, Fonseca, LMG, et al. 2020. Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sensing, 12(24): 4033. DOI: 10.3390/rs12244033
  29. 29Fritz, S, See, L, Carlson, T, Haklay, M. (Muki), Oliver, JL, Fraisl, D, Mondardini, R, Brocklehurst, M, Shanley, LA, Schade, S, Wehn, U, Abrate, T, Anstee, J, Arnold, S, Billot, M, Campbell, J, Espey, J, Gold, M, Hager, G, West, S, et al. 2019. Citizen science and the United Nations Sustainable Development Goals. Nature Sustainability, 2(10): 922930. DOI: 10.1038/s41893-019-0390-3
  30. 30Gao, B. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257266. DOI: 10.1016/S0034-4257(96)00067-3
  31. 31GEO secretariat. 2008. Building a Global Earth Observation System of Systems, 7.
  32. 32Giuliani, G, Camara, G, Killough, B and Minchin, S. 2019. Earth Observation Open Science: Enhancing Reproducible Science Using Data Cubes. Data, 4(4): 147. DOI: 10.3390/data4040147
  33. 33Giuliani, G, Chatenoux, B, Benvenuti, A, Lacroix, P, Santoro, M and Mazzetti, P. 2020. Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG15 – exploring the potential of data cube. Big Earth Data, 4(1): 120. DOI: 10.1080/20964471.2020.1711633
  34. 34Giuliani, G, Chatenoux, B, Bono, AD, Rodila, D, Richard, J-P, Allenbach, K, Dao, H and Peduzzi, P. 2017. Building an Earth Observations Data Cube: Lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data, 1(1): 118. DOI: 10.1080/20964471.2017.1398903
  35. 35Giuliani, G, Chatenoux, B, Honeck, E and Richard, J. 2018. Towards Sentinel-2 Analysis Ready Data: A Swiss Data Cube Perspective. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, 86598662. DOI: 10.1109/IGARSS.2018.8517954
  36. 36Giuliani, G, Dao, H, De Bono, A, Chatenoux, B, Allenbach, K, De Laborie, P, Rodila, D, Alexandris, N and Peduzzi, P. 2017. Live Monitoring of Earth Surface (LiMES): A framework for monitoring environmental changes from Earth Observations. Remote Sensing of Environment. DOI: 10.1016/j.rse.2017.05.040
  37. 37Giuliani, G, Dubois, A and Lacroix, P. 2014. Testing OGC Web Feature and Coverage Service performance: Towards efficient delivery of geospatial data. Journal of Spatial Information Science, 7: 123. DOI: 10.5311/JOSIS.2013.7.112
  38. 38Giuliani, G, Egger, E, Italiano, J, Poussin, C, Richard, J-P and Chatenoux, B. 2020. Essential Variables for Environmental Monitoring: What are the Possible Contributions of Earth Observation Data Cubes? Data, 5(4): 100. DOI: 10.3390/data5040100
  39. 39Giuliani, G, Guigoz, Y, Lacroix, P, Ray, N and Lehmann, A. 2016. Facilitating the production of ISO-compliant metadata of geospatial datasets. International Journal of Applied Earth Observation and Geoinformation, 44: 239243. DOI: 10.1016/j.jag.2015.08.010
  40. 40Giuliani, G, Lacroix, P, Guigoz, Y, Roncella, R, Bigagli, L, Santoro, M, Mazzetti, P, Nativi, S, Ray, N and Lehmann, A. 2016. Bringing GEOSS Services into Practice: A Capacity Building Resource on Spatial Data Infrastructures (SDI). Transactions in GIS, 21(4): 811824. DOI: 10.1111/tgis.12209
  41. 41Giuliani, G, Masó, J, Mazzetti, P, Nativi, S and Zabala, A. 2019. Paving the Way to Increased Interoperability of Earth Observations Data Cubes. Data, 4(3): 113. DOI: 10.3390/data4030113
  42. 42Giuliani, G, Nativi, S, Obregon, A, Beniston, M and Lehmann, A. 2017. Spatially enabling the Global Framework for Climate Services: Reviewing geospatial solutions to efficiently share and integrate climate data & information. Climate Services, 8: 4458. DOI: 10.1016/j.cliser.2017.08.003
  43. 43Giuliani, G and Peduzzi, P. 2011. The PREVIEW Global Risk Data Platform: A geoportal to serve and share global data on risk to natural hazards. Nat. Hazards Earth Syst. Sci., 11(1): 5366. DOI: 10.5194/nhess-11-53-2011
  44. 44Giuliani, G, Ray, N, Schwarzer, S, De Bono, A, Peduzzi, P, Dao, H, Van Woerden, J, Witt, R, Beniston, M and Lehmann, A. 2011. Sharing Environmental Data through GEOSS. International Journal of Applied Geospatial Research, 2(1): 117. DOI: 10.4018/jagr.2011010101
  45. 45Gomes, VCF, Queiroz, GR and Ferreira, KR. 2020. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sensing, 12(8): 1253. DOI: 10.3390/rs12081253
  46. 46Gorelick, N, Hancher, M, Dixon, M, Ilyushchenko, S, Thau, D and Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 1827. DOI: 10.1016/j.rse.2017.06.031
  47. 47Guo, H. 2017. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data, 1(1–2): 420. DOI: 10.1080/20964471.2017.1403062
  48. 48Guo, H, Nativi, S, Liang, D, Craglia, M, Wang, L, Schade, S, Corban, C, He, G, Pesaresi, M, Li, J, Shirazi, Z, Liu, J and Annoni, A. 2020. Big Earth Data science: An information framework for a sustainable planet. International Journal of Digital Earth, 125. DOI: 10.1080/17538947.2020.1743785
  49. 49Harris, R and Baumann, I. 2015. Open data policies and satellite Earth observation. Space Policy, 32: 4453. DOI: 10.1016/j.spacepol.2015.01.001
  50. 50He, G, Zhang, Z, Jiao, W, Long, T, Peng, Y, Wang, G, Yin, R, Wang, W, Zhang, X, Liu, H, Cheng, B and Xiang, B. 2018. Generation of ready to use (RTU) products over China based on Landsat series data. Big Earth Data, 19. DOI: 10.1080/20964471.2018.1433370
  51. 51Henricksen, B. 2007. UNSDI Compendium: A UNSDI Vision, Implementation Strategy, and Reference Architecture, 150.
  52. 52Honeck, E, Castello, R, Chatenoux, B, Richard, J-P, Lehmann, A and Giuliani, G. 2018. From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland. ISPRS International Journal of Geo-Information, 7(12): 455. DOI: 10.3390/ijgi7120455
  53. 53Innerebner, M, Costa, A, Chuprikova, E, Monsorno, R and Ventura, B. 2017. Organizing earth observation data inside a spatial data infrastructure. Earth Science Informatics, 10(1): 5568. DOI: 10.1007/s12145-016-0276-0
  54. 54IPBES. 2018. Summary for policymakers of the thematic assessment of land degradation and restoration. IPBES secretariat. https://www.ipbes.net.
  55. 55ISO. 2020. ISO 19165-2:2020 Geographic information—Preservation of digital data and metadata—Part 2: Content specifications for Earth observation data and derived digital products, 30. ISO. https://www.iso.org/standard/73810.html.
  56. 56Kavvada, A, Metternicht, G, Kerblat, F, Mudau, N, Haldorson, M, Laldaparsad, S, Friedl, L, Held, A and Chuvieco, E. 2020. Towards delivering on the sustainable development goals using earth observations. Remote Sensing of Environment, 247: 111930. DOI: 10.1016/j.rse.2020.111930
  57. 57Kganyago, M and Mhangara, P. 2019. The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program. ISPRS International Journal of Geo-Information, 8(7): 292. DOI: 10.3390/ijgi8070292
  58. 58Killough, B. 2018. Overview of the Open Data Cube Initiative. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, 86298632. DOI: 10.1109/IGARSS.2018.8517694
  59. 59Kotsev, A, Minghini, M, Tomas, R, Cetl, V and Lutz, M. 2020. From Spatial Data Infrastructures to Data Spaces—A Technological Perspective on the Evolution of European SDIs. ISPRS International Journal of Geo-Information, 9(3): 176. DOI: 10.3390/ijgi9030176
  60. 60Lewis, A, Lacey, J, Mecklenburg, S, Ross, J, Siqueira, A, Killough, B, Szantoi, Z, Tadono, T, Rosenavist, A, Goryl, P, Miranda, N and Hosford, S. 2018. CEOS Analysis Ready Data for Land (CARD4L) Overview. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, 74077410. DOI: 10.1109/IGARSS.2018.8519255
  61. 61Li, J and Roy, DP. 2017. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9): 902. DOI: 10.3390/rs9090902
  62. 62Maso, J, Zabala, A, Serral, I and Pons, X. 2019. A Portal Offering Standard Visualization and Analysis on top of an Open Data Cube for Sub-National Regions: The Catalan Data Cube Example. Data, 4(3): 96. DOI: 10.3390/data4030096
  63. 63Maus, V, Câmara, G, Appel, M and Pebesma, E. 2019. dtwSat: Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis in R. Journal of Statistical Software, 88(1): 131. DOI: 10.18637/jss.v088.i05
  64. 64Merodio Gómez, P, Pérez García, M, García Seco, G, Ramírez Santiago, A and Tapia Johnson, C. 2019. The Americas’ Spatial Data Infrastructure. ISPRS International Journal of Geo-Information, 8(10): 432. DOI: 10.3390/ijgi8100432
  65. 65Munafò, MR, Nosek, BA, Bishop, DVM, Button, KS, Chambers, CD, Percie du Sert, N, Simonsohn, U, Wagenmakers, E-J, Ware, JJ and Ioannidis, JPA. 2017. A manifesto for reproducible science. Nature Human Behaviour, 1(1): 0021. DOI: 10.1038/s41562-016-0021
  66. 66Nativi, S, Mazzetti, P and Craglia, M. 2017. A view-based model of data-cube to support big earth data systems interoperability. Big Earth Data, 125. DOI: 10.1080/20964471.2017.1404232
  67. 67Nativi, S, Mazzetti, P, Santoro, M, Papeschi, F, Craglia, M and Ochiai, O. 2015. Big Data challenges in building the Global Earth Observation System of Systems. Environmental Modelling & Software, 68: 126. DOI: 10.1016/j.envsoft.2015.01.017
  68. 68Nativi, S, Santoro, M, Giuliani, G and Mazzetti, P. 2019. Towards a knowledge base to support global change policy goals. International Journal of Digital Earth, 129. DOI: 10.1080/17538947.2018.1559367
  69. 69Patroumpas, K, Georgomanolis, N, Stratiotis, T, Alexakis, M and Athanasiou, S. 2015. Exposing INSPIRE on the Semantic Web. Journal of Web Semantics, 35: 5362. DOI: 10.1016/j.websem.2015.09.003
  70. 70Peng, G, Lacagnina, C, Downs, RR, Ramapriyan, H, Ivánová, I, Ganske, A, Jones, D, Bastin, L, Wyborn, L and Bastrakova, I. 2021. International Community Guidelines for Sharing and Reusing Quality Information of Individual Earth Science Datasets, 60. DOI: 10.31219/osf.io/xsu4p
  71. 71Poussin, C, Guigoz, Y, Palazzi, E, Terzago, S, Chatenoux, B and Giuliani, G. 2019. Snow Cover Evolution in the Gran Paradiso National Park, Italian Alps, Using the Earth Observation Data Cube. Data, 4(4): 138. DOI: 10.3390/data4040138
  72. 72Ramage, S. 2011, July. Geospatial standards, data sharing and interoperability. PoPositionIT, 3637.
  73. 73Rizvi, SR, Killough, B, Cherry, A and Gowda, S. 2018. The Ceos Data Cube Portal: A User-Friendly, Open Source Software Solution for the Distribution, Exploration, Analysis, and Visualization of Analysis Ready Data. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, 86398642. DOI: 10.1109/IGARSS.2018.8518727
  74. 74Rouse, JW, Schell, JA, Wand, DD and Harlan, JC. 1974. Monitoring the vernal advancement of retrogradation of natural vegetation (NASA/GSFC, Type III, Final Report, 1371).
  75. 75Rowley, J. 2007. The wisdom hierarchy: Representations of the DIKW hierarchy. Journal of Information Science, 33(2): 163180. DOI: 10.1177/0165551506070706
  76. 76Saito, O, Managi, S, Kanie, N, Kauffman, J and Takeuchi, K. 2017. Sustainability science and implementing the sustainable development goals. Sustainability Science, 12(6): 907910. DOI: 10.1007/s11625-017-0486-5
  77. 77Salzano, R, Salvatori, R, Valt, M, Giuliani, G, Chatenoux, B and Ioppi, L. 2019. Automated Classification of Terrestrial Images: The Contribution to the Remote Sensing of Snow Cover. Geosciences, 9(2): 97. DOI: 10.3390/geosciences9020097
  78. 78Science Business. 2019. Why Open Science is the Future, 16. Science Business.
  79. 79Simonis, I. 2019. Standardization Efforts Across Space Agencies: Applications and Analysis Ready Data Discovery in the Cloud. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, 44414443. DOI: 10.1109/IGARSS.2019.8899229
  80. 80Soille, P, Burger, A, De Marchi, D, Kempeneers, P, Rodriguez, D, Syrris, V and Vasilev, V. 2018. A versatile data-intensive computing platform for information retrieval from big geospatial data. Future Generation Computer Systems, 81: 3040. DOI: 10.1016/j.future.2017.11.007
  81. 81Stall, S, Yarmey, L, Cutcher-Gershenfeld, J, Hanson, B, Lehnert, K, Nosek, B, Parsons, M, Robinson, E and Wyborn, L. 2019. Make scientific data FAIR. Nature, 570(7759): 27. DOI: 10.1038/d41586-019-01720-7
  82. 82Sudmanns, M, Tiede, D, Augustin, H and Lang, S. 2019. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. International Journal of Digital Earth, 117. DOI: 10.1080/17538947.2019.1572799
  83. 83The future we want. 2012. Nations, United 53.
  84. 84Tondapu, G, Markert, K, Lindquist, EJ, Wiell, D, Díaz, ASP, Johnson, G, Ashmall, W, Chishtie, F, Ate, P, Tenneson, K, Patterson, MS, Ricci, S, Fontanarosa, R and Saah, D. 2018. A SERVIR FAO Open Source Partnership: Co-development of Open Source Web Technologies using Earth Observation for Land Cover Mapping. AGU Fall Meeting Abstracts, 21. http://adsabs.harvard.edu/abs/2018AGUFMIN21B..27T
  85. 85Truckenbrodt, J, Freemantle, T, Williams, C, Jones, T, Small, D, Dubois, C, Thiel, C, Rossi, C, Syriou, A and Giuliani, G. 2019. Towards Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube. Data, 4(3): 93. DOI: 10.3390/data4030093
  86. 86United Nations. 2017. Earth Observations for Official Statistics, 170.
  87. 87Virapongse, A, Pearlman, F, Pearlman, J, Murambadoro, MD, Kuwayama, Y and Glasscoe, MT. 2020. Ten rules to increase the societal value of earth observations. Earth Science Informatics. DOI: 10.1007/s12145-020-00453-w
  88. 88Wagner, CS and Jonkers, K. 2017. Open countries have strong science. Nature News, 550(7674): 32. DOI: 10.1038/550032a
  89. 89Whitcraft, AK, Becker-Reshef, I, Justice, CO, Gifford, L, Kavvada, A and Jarvis, I. 2019. No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework. Remote Sensing of Environment, 235: 111470. DOI: 10.1016/j.rse.2019.111470
  90. 90Wilkinson, MD, Dumontier, M, Aalbersberg, IjJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, Santos, LB. da S, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Mons, B, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
  91. 91World Economic Forum. 2020. The Global Risks Report 2020, 102.
  92. 92Wulder, MA, Masek, JG, Cohen, WB, Loveland, TR and Woodcock, CE. 2012. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122: 210. DOI: 10.1016/j.rse.2012.01.010
  93. 93Zhu, Z. 2019. Science of Landsat Analysis Ready Data. Remote Sensing, 11(18): 2166. DOI: 10.3390/rs11182166
Language: English
Submitted on: Mar 4, 2021
Accepted on: May 15, 2021
Published on: May 31, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Gregory Giuliani, Hugues Cazeaux, Pierre-Yves Burgi, Charlotte Poussin, Jean-Philippe Richard, Bruno Chatenoux, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.