References
- 1Aji, A, Wang, F, Vo, H, Lee, R, Liu, Q, Zhang, X and Saltz, J. 2013. Hadoop gis: A high performance spatial data warehousing system over mapreduce. Proceedings of the VLDB Endowment, 6(11): 1009–1020. DOI: 10.14778/2536222.2536227
- 2Al Aghbari, Z, Bahutair, M and Kamel, I. 2019. Geosimmr: A mapreduce algorithm for detecting communities based on distance and interest in social networks. Data Science Journal, 18(1): 1–10. DOI: 10.5334/dsj-2019-013
- 3Al Aghbari, Z, Kamel, I and Awad, T. 2012. On clustering large number of data streams. Intelligent Data Analysis, 16(1): 69–91. DOI: 10.3233/IDA-2011-0511
- 4Al Aghbari, Z, Kamel, I and Elbaroni, W. 2013. Energy-efficient distributed wireless sensor network scheme for cluster detection. International Journal of Parallel, Emergent and Distributed Systems, 28: 1: 1–28. DOI: 10.1080/17445760.2012.729584
- 5Al Jawarneh, IM, Bellavista, P, Corradi, A, Foschini, L, Montanari, R and Zanotti, A. 2018. In-memory Spatial-Aware Framework for Processing Proximity-Alike Queries in Big Spatial Data. In: 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 1–6.
IEEE . DOI: 10.1109/CAMAD.2018.8514950 - 6Alsaafin, A, Khedr, AM and Al Aghbari, Z. 2018. Distributed trajectory design for data gathering using mobile sink in wireless sensor networks. AEU-International Journal of Electronics and Communications, 96: 1–12. DOI: 10.1016/j.aeue.2018.09.005
- 7Babar, M, Arif, F, Jan, M, Tan, Z and Khan, F. 2019. Urban data management system: Towards big data analytics for internet of things based smart urban environment using customized hadoop. Future Generation Computer Systems, 96: 398–409. DOI: 10.1016/j.future.2019.02.035
- 8Bae, WD, Alkobaisi, S, Kim, SH, Narayanappa, S and Shahabi, C. 2007. Supporting range queries on web data using k-nearest neighbor search. In: International Symposium on Web and Wireless Geographical Information Systems, 61–75.
Springer . DOI: 10.1007/978-3-540-76925-5_5 - 9Dean, J and Ghemawat, S. 2008. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1): 107–113. DOI: 10.1145/1327452.1327492
- 10Dinges, L, Al-Hamadi, A, Elzobi, M, Al Aghbari, Z and Mustafa, H. 2011. Offline automatic segmentation based recognition of handwritten Arabic words. International Journal of Signal Processing, Image Processing and Pattern Recognition, 4(4): 131–143.
- 11Eldawy, A and Mokbel, MF. 2015. Spatialhadoop: A mapreduce framework for spatial data. In: 2015 IEEE 31st international conference on Data Engineering, 1352–1363.
IEEE . DOI: 10.1109/ICDE.2015.7113382 - 12Garaeva, A, Makhmutova, F, Anikin, I and Sattler, K-U. 2017. A framework for co-location patterns mining in big spatial data. In: 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), 477–480.
IEEE . DOI: 10.1109/SCM.2017.7970622 - 13Geolite 2 free downloadable databases maxmind developer site.
https://dev.maxmind.com/geoip/geoip2/geolite2/ . Accessed: 2019-05-22. - 14George, L. 2011. HBase: the definitive guide: random access to your planetsize data. “O’Reilly Media, Inc.”
- 15Güting, RH, Behr, T, Düntgen, C and others. 2010. SECONDO: A Platform for Moving Objects Database Research and for Publishing and Integrating Research Implementations. IEEE Data Eng. Bull. 33(2): 56–63.
- 16Hagedorn, S, Götze, P and Sattler, K-U. 2017. The STARK framework for spatio-temporal data analytics on spark. Datenbanksysteme für Business, Technologie und Web (BTW 2017).
- 17Hajebi, K, Abbasi-Yadkori, Y, Shahbazi, H and Zhang, H. 2011. Fast approximate nearest-neighbor search with k-nearest neighbor graph. In: Twenty-Second International Joint Conference on Artificial Intelligence.
- 18Hammou, B, Lahcen, A and Mouline, S. 2018. Apra: An approximate parallel recommendation algorithm for big data. Knowledge-Based Systems, 157: 10–19. DOI: 10.1016/j.knosys.2018.05.006
- 19Hanif, S, Khedr, AM, Al Aghbari, Z and Agrawal, DP. 2018. Opportunistically exploiting internet of things for wireless sensor network routing in smart cities. Journal of Sensor and Actuator Networks, 7(4): 46. DOI: 10.3390/jsan7040046
- 20Hughes, JN, Annex, A, Eichelberger, CN, Fox, A, Hulbert, A and Ronquest, M. 2015.
Geomesa: A distributed architecture for spatio-temporal fusion . In: Geospatial Informatics, Fusion, and Motion Video Analytics V, 9473:94730F . International Society for Optics and Photonics. DOI: 10.1117/12.2177233 - 21JTS Topology Suite.
https://www.osgeo.org/projects/jts/ . Accessed: 2019-06-18. - 22Kubo, M, Aghbari, Z, Makinouchi, A and Oh, K-S. 2003. Content-based image retrieval technique using wavelet-based shift and brightness invariant edge feature. International Journal of Wavelets, Multiresolution and Information Processing, 1(2): 163–178. DOI: 10.1142/S0219691303000141
- 23Lu, J and Güting, RH. 2014. Parallel secondo: A practical system for largescale processing of moving objects. In: 2014 IEEE 30th International Conference on Data Engineering, 1190–1193.
IEEE . DOI: 10.1109/ICDE.2014.6816738 - 24Magellan: Geospatial Analytics on Spark. Oct. 2015.
https://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/ . Accessed: 2019-06-18. - 25Nishimura, S, Das, S, Agrawal, D and El Abbadi, A. 2011. MD-HBase: A scalable multi-dimensional data infrastructure for location aware services. In: 2011 IEEE 12th International Conference on Mobile Data Management, 1: 7–16.
IEEE . DOI: 10.1109/MDM.2011.41 - 26OpenStreetMap.
https://www.openstreetmap.org/ . Accessed: 2019-06-18. - 27Ryan LeCompte. Bounded priority queue in scala.
https://gist.github.com/ryanlecompte/5746241 . Accessed: 2019-06-08. - 28Sapountzi, A and Psannis, K. 2018. Social networking data analysis tools and challenges. Future Generation Computer Systems, 86: 893–913. DOI: 10.1016/j.future.2016.10.019
- 29Sarwat, M. 2015. Interactive and Scalable Exploration of Big Spatial Data–A Data Management Perspective. In: 2015 16th IEEE International Conference on Mobile Data Management, 1: 263–270.
IEEE . DOI: 10.1109/MDM.2015.67 - 30Tang, M, Yu, Y, Malluhi, QM, Ouzzani, M and Aref, WG. 2016. Locationspark: A distributed in-memory data management system for big spatial data. Proceedings of the VLDB Endowment, 9(13): 1565–1568. DOI: 10.14778/3007263.3007310
- 31Thusoo, A, Sarma, JS, Jain, N, Shao, Z, Chakka, P, Anthony, S, Liu, H, Wyckoff, P and Murthy, R. 2009. Hive: a warehousing solution over a mapreduce framework. Proceedings of the VLDB Endowment, 2(2): 1626–1629. DOI: 10.14778/1687553.1687609
- 32White, T. 2012. Hadoop: The definitive guide. “O’Reilly Media, Inc.”
- 33Whitman, RT, Park, MB, Ambrose, SM and Hoel, EG. 2014. Spatial indexing and analytics on Hadoop. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 73–82.
ACM . DOI: 10.1145/2666310.2666387 - 34Xie, D, Li, F, Yao, B, Li, G, Zhou, L and Guo, M. 2016. Simba: Efficient in-memory spatial analytics. In: Proceedings of the 2016 International Conference on Management of Data, 1071–1085.
ACM . DOI: 10.1145/2882903.2915237 - 35Xie, X, Xiong, Z, Hu, X, Zhou, G and Ni, J. 2014. On massive spatial data retrieval based on spark. In: International Conference on Web-Age Information Management, 200–208.
Springer . DOI: 10.1007/978-3-319-11538-2_19 - 36You, S, Zhang, J and Gruenwald, L. 2015. Large-scale spatial join query processing in cloud. In: 2015 31st IEEE International Conference on Data Engineering Workshops, 34–41.
IEEE . DOI: 10.1109/ICDEW.2015.7129541 - 37Yu, J, Wu, J and Sarwat, M. 2015. Geospark: A cluster computing framework for processing large-scale spatial data. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, 70.
ACM . DOI: 10.1145/2820783.2820860 - 38Zaharia, M, Chowdhury, M, Das, T, Dave, A, Ma, J, McCauley, M, Franklin, MJ, Shenker, S and Stoica, I. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2–2.
USENIX Association . - 39Zaharia, M, Xin, RS, Wendell, P, Das, T, Armbrust, M, Dave, A, Meng, X, Rosen, J, Venkataraman, S, Franklin, MJ and others. 2016. Apache spark: a unified engine for big data processing. Communications of the ACM, 59(11): 56–65. DOI: 10.1145/2934664
- 40Zhang, J-D and Chow, C-Y. 2015.
Geosoca: Exploiting geographical, social and categorical correlations for point-of-interest recommendations . In: SIGIR, ACM. DOI: 10.1145/2766462.2767711 - 41Zhang, Z, Jin, C, Mao, J, Yang, X and Zhou, A. 2017. Trajspark: A scalable and efficient in-memory management system for big trajectory data. In: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, 11–26.
Springer . DOI: 10.1007/978-3-319-63579-8_2
